Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1137856.1137885acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
Article

On realistic terrains

Published: 05 June 2006 Publication History

Abstract

We study worst-case complexities of visibility and distance structures on terrains under realistic assumptions on edge length ratios and the angles of the triangles. We show that the visibility map of a point for a realistic terrain with n triangles has complexity Θ(nn). We also prove that the shortest path between two points p and q on a realistic terrain passes through Θ(√n) triangles, and that the bisector between p and q has complexity O(n √n). We use these results to show that the shortest path map for any point on a realistic terrain has complexity Θ(n√n), and that the Voronoi diagram for any set of m points on a realistic terrain has complexity Ω(n + m√n) and O((n+m)√n). Our results immediately imply more efficient algorithms for computing the various structures on realistic terrains.

References

[1]
H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig. Approximate motion planning and the complexity of the boundary of the union of simple geometric figures. Algorithmica, 8:391--406, 1992.
[2]
B. Aronov, A. Efrat, V. Koltun, and M. Sharir. On the union of κ-round objects in three and four dimensions. In Proc. 20st Annu. ACM Sympos. Comput. Geom., pages 383--390, 2004.
[3]
B. Aronov and J. O'Rourke. Nonoverlap of the star unfolding. Discrete Comput. Geom., 8:219--250, 1992.
[4]
J. Chen and Y. Han. Shortest paths on a polyhedron. Internat. J. Comput. Geom. Appl., 6(2):127--144, 1996.
[5]
M. de Berg. Linear size binary space partitions for uncluttered scenes. Algorithmica, 28:353--366, 2000.
[6]
M. de Berg. Vertical ray shooting for fat objects. In Proc. 21st Annu. ACM Sympos. Comput. Geom., pages 288--295, 2005.
[7]
M. de Berg, M. J. Katz, M. Overmars, A. F. van der Stappen, and J. Vleugels. Models and motion planning. Comput. Geom. Theory Appl., 23:53--68, 2002.
[8]
M. de Berg, M. J. Katz, A. F. van der Stappen, and J. Vleugels. Realistic input models for geometric algorithms. Algorithmica, 34:81--97, 2002.
[9]
A. Efrat. The complexity of the union of (α, β)-covered objects. SIAM J. Comput., 34:775--787, 2005.
[10]
J. Erickson. Local polyhedra and geometric graphs. Comput. Geom. Theory Appl., 31:101--125, 2005.
[11]
S. Kapoor. Efficient computation of geodesic shortest paths. In Proc. 31st Annu. ACM Sympos. Theory of Computing, pages 770--779, 1999.
[12]
M. J. Katz, M. H. Overmars, and M. Sharir. Efficient hidden surface removal for objects with small union size. Comput. Geom. Theory Appl., 2:223--234, 1992.
[13]
J. Matoušek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl. Fat triangles determine linearly many holes. SIAM J. Comput., 23:154--169, 1994.
[14]
M. McKenna. Worst-case optimal hidden-surface removal. ACM Trans. Graph., 6:19--28, 1987.
[15]
J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem. SIAM J. Comput., 16:647--668, 1987.
[16]
J. S. B. Mitchell, D. M. Mount, and S. Suri. Query-sensitive ray shooting. Internat. J. Comput. Geom. Appl., 7(4):317--347, Aug. 1997.
[17]
M. H. Overmars and A. F. van der Stappen. Range searching and point location among fat objects. J. Algorithms, 21:629--656, 1996.
[18]
O. Schwarzkopf and J. Vleugels. Range searching in low-density environments. Inform. Process. Lett., 60:121--127, 1996.
[19]
A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels. Motion planning in environments with low obstacle density. Discrete Comput. Geom., 20(4):561--587, 1998.
[20]
M. van Kreveld. On fat partitioning, fat covering, and the union size of polygons. Comput. Geom. Theory Appl., 9(4):197--210, 1998.
[21]
J. Vleugels. On Fatness and Fitness—Realistic Input Models for Geometric Algorithms. Ph.{D. thesis, Dept. Comput. Sci., Univ. Utrecht, Utrecht, The Netherlands, 1997.

Cited By

View all
  • (2013)The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfacesInformation Processing Letters10.1016/j.ipl.2012.12.010113:4(132-136)Online publication date: 1-Feb-2013
  • (2012)Farthest voronoi diagrams under travel time metricsProceedings of the 6th international conference on Algorithms and computation10.1007/978-3-642-28076-4_6(28-39)Online publication date: 15-Feb-2012
  • (2011)Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated SurfacesIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2010.22133:8(1502-1517)Online publication date: 1-Aug-2011
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SCG '06: Proceedings of the twenty-second annual symposium on Computational geometry
June 2006
500 pages
ISBN:1595933409
DOI:10.1145/1137856
  • Program Chairs:
  • Nina Amenta,
  • Otfried Cheong
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 June 2006

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. polyhedral terrains
  2. realistic input models
  3. shortest paths
  4. visibility maps
  5. voronoi diagrams

Qualifiers

  • Article

Conference

SoCG06

Acceptance Rates

Overall Acceptance Rate 625 of 1,685 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2013)The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfacesInformation Processing Letters10.1016/j.ipl.2012.12.010113:4(132-136)Online publication date: 1-Feb-2013
  • (2012)Farthest voronoi diagrams under travel time metricsProceedings of the 6th international conference on Algorithms and computation10.1007/978-3-642-28076-4_6(28-39)Online publication date: 15-Feb-2012
  • (2011)Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated SurfacesIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2010.22133:8(1502-1517)Online publication date: 1-Aug-2011
  • (2010)An Optimal-Time Algorithm for Shortest Paths on Realistic PolyhedraDiscrete & Computational Geometry10.5555/3116259.311637543:1(21-53)Online publication date: 1-Jan-2010
  • (2010)Approximation algorithms for shortest descending paths in terrainsJournal of Discrete Algorithms10.1016/j.jda.2009.05.0018:2(214-230)Online publication date: 1-Jun-2010
  • (2009)Higher-order Voronoi diagrams on triangulated surfacesInformation Processing Letters10.5555/1517855.1518094109:9(440-445)Online publication date: 1-Apr-2009
  • (2009)Visibility maps of realistic terrains have linear smoothed complexityProceedings of the twenty-fifth annual symposium on Computational geometry10.1145/1542362.1542397(163-168)Online publication date: 8-Jun-2009
  • (2009)An Optimal-Time Algorithm for Shortest Paths on Realistic PolyhedraDiscrete & Computational Geometry10.1007/s00454-009-9136-843:1(21-53)Online publication date: 30-Jan-2009
  • (2009)Smoothing Imprecise 1.5D TerrainsApproximation and Online Algorithms10.1007/978-3-540-93980-1_17(214-226)Online publication date: 13-Jan-2009
  • (2008)On realistic terrainsComputational Geometry: Theory and Applications10.1016/j.comgeo.2007.10.00841:1-2(48-67)Online publication date: 1-Oct-2008
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media