Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Identification of low-level point radioactive sources using a sensor network

Published: 04 October 2010 Publication History

Abstract

Identification of a low-level point radioactive source amidst background radiation is achieved by a network of radiation sensors using a two-step approach. Based on measurements from three or more sensors, a geometric difference triangulation method or an N-sensor localization method is used to estimate the location and strength of the source. Then a sequential probability ratio test based on current measurements and estimated parameters is employed to finally decide: (1) the presence of a source with the estimated parameters, or (2) the absence of the source, or (3) the insufficiency of measurements to make a decision. This method achieves specified levels of false alarm and missed detection probabilities, while ensuring a close-to-minimal number of measurements for reaching a decision. This method minimizes the ghost-source problem of current estimation methods, and achieves a lower false alarm rate compared with current detection methods. This method is tested and demonstrated using: (1) simulations, and (2) a test-bed that utilizes the scaling properties of point radioactive sources to emulate high intensity ones that cannot be easily and safely handled in laboratory experiments.

References

[1]
}}Anderson, D. N., Stromswold, D. C., Wunschel, S. C., Peurrung, A. J., and Hansen, R. R. 2006. Detection and location of Gamma-Ray sources with a modulating coded mask. Technometrics 48, 2, 252--261.
[2]
}}Archer, D. E., Beauchamp, B. R., Mauger, G. J., Nelson, K. E., Mercer, M. B., Pletcher, D. C., Riot, V. J., Schek, J. L., and Knapp, D. A. 2006. Adaptable radiation monitoring system and method. U.S. Patent 7,064,336 B2.
[3]
}}Bar-Shalom, Y. and Li, X. R. 1995. Multitarget-Multisensor Tracking: Principles and Techniques. YBS Publishing.
[4]
}}Bar-Shalom, Y. and Li, X.-R. 2001. Estimation with Applications to Tracking and Navigation. Wiley, New York.
[5]
}}Blackman, S. and Popoli, R. 1999. Design and Analysis of Modern Tracking Systems. Artech House, Boston, MA.
[6]
}}Brennan, S. M., Mielke, A. M., and Torney, D. C. 2004. Radiation detection with distributed sensor networks. IEEE Computer, 57--59.
[7]
}}Cheng, X., Thaeler, A., Xue, G., and Chen, D. 2004. Tps: A time-based positioning scheme for outdoor wireless sensor networks. In Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'04). IEEE Computer Society Press, Los Alamitos, CA, 2685--2696.
[8]
}}Chin, J.-C., Yau, D. K., Rao, N. S., Yang, Y., Ma, C. Y., and Shankar, M. 2008. Accurate localization of low-level radioactive source under noise and measurement errors. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (SenSys'08). ACM, New York, 183--196.
[9]
}}Devroye, L., Gyorfi, L., and Lugosi, G. 1997. A Probabilistic Theory of Pattern Recognition. Springer-Verlag, Berlin.
[10]
}}Ding, M. and Cheng, X. 2009. Fault-tolerant target tracking in sensor networks. In Proceedings of MobiHoc. ACM, New York.
[11]
}}Duda, R. O., Hart, P. E., and Stork, D. G. 2001. Pattern Classification. Wiley, New York.
[12]
}}Fehlau, P. E. 1993. Comparing a recursive digital filter with the moving-average and sequential probability-ratio detection methods for SNM portal monitors. IEEE Trans. Nucl. Sci. 40, 2, 143--146.
[13]
}}Gunatilaka, A., Ristic, B., and Gailis, R. 2007. On localisation of a radiological point source. In Proceedings of the International Conference on Information, Decision and Control. IEEE Computer Society Press, Los Alamitos, CA.
[14]
}}Gunatilaka, A., Ristic, B., Skvortsov, A., and Morelande, M. 2008. Parameter estimation of a continuous chemical plume source. In Proceedings of the International Conference on Information Fusion. IEEE Computer Society Press, Los Alamitos, CA.
[15]
}}Howse, J. W., Ticknor, L. O., and Muske, K. R. 2001. Least squares estimation techniques for position tracking of radioactive sources. Automatica 37, 1727--1737.
[16]
}}iServer. iserver microserver products. http://www.newportus.com/Products/ProdFam/iServer.htm.
[17]
}}Jarman, K. D., Smith, L. E., and Carlson, D. K. 2004. Sequential probability ratio test for long-term radiation monitoring. IEEE Trans. Nuclear Sci. 51, 4, 1662--1666.
[18]
}}Johnson, N. L. 1961. Sequential analysis: A survey. J. Royal Statis. Soc. Series A 124, 3, 372--411.
[19]
}}Knoll, G. F. 2000. Radiation Detection and Measurement. Wiley, New York.
[20]
}}Kushner, H. J. and Yin, C. G. 2003. Stochastic Approximation and Recursive Algorithms and Applications, 2nd ed. Springer-Verlag, Berlin.
[21]
}}Ljung, L. 1998. System Identification: Theory for the User 2nd Ed. Prentice-Hall, Englewood Cliffs, NJ.
[22]
}}Macmillan, N. A. and Macmillan, N. A. 2004. Detection Theory: A User's Guide 2nd Ed. Lawrence Erlbaum Associates.
[23]
}}Mielke, A., Jackson, D., Brennan, S. M., Smith, M. C., Torney, D. C., Maccabe, A. B., and Karlin, J. 2005. Radiation detection with distributed sensor networks. In SPIE Defense and Security Proceedings.
[24]
}}Mihalas, D. and Mihalas, B. W. 2000. Foundations of Radiation Hydrodynamics. Courier Dover Publications.
[25]
}}Morelande, M., Ristic, B., and Gunatilaka, A. 2007. Detection and parameter estimation of multiple radioactive sources. In Proceedings of the International Conference on Information Fusion. IEEE Computer Society Press, Los Alamitos, CA.
[26]
}}Nelson, K. E., Valentine, J. D., and Beauchamp, B. R. 2007. Radiation detection method and system using the sequential probability ratio test. U.S. Patent 7,244,930 B2.
[27]
}}Nemzek, R. J., Dreicer, J. S., Torney, D. C., and Warnock, T. T. 2004. Distributed sensor networks for detection of mobile radioactive sources. IEEE Trans. Nuclear Sci. 51, 4, 1693--1700.
[28]
}}Niculescu, D. and Nath, B. 2003. Ad hoc positioning system (aps) using aoa. In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'03). IEEE Computer Society Press, Los Alamitos, CA, 1734--1743.
[29]
}}Poor, H. V. 1998. An Introduction to Signal Detection and Estimation. Springer-Verlag, Berlin.
[30]
}}Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical Recipes in C. Cambridge University Press, Cambridge, UK.
[31]
}}Rao, N. S. V., Shankar, M., Chin, J.-C., Yau, D. K. Y., Srivathsan, S., Iyengar, S. S., Yang, Y., and Hou, J. C. 2008. Identification of low-level point radiation sources using a sensor network. In Proceedings of ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). ACM, New York.
[32]
}}Rao, N. S. V., Xu, X., and Sahni, S. 2007. A computational geometric method for dtoa triangulation. In Proceedings of the International Conference on Information Fusion.
[33]
}}RFTrax. Rftrax rad-czt radiation sensor. http://www.rftrax.com/radczt.html.
[34]
}}Savvides, A., Han, C.-C., and Strivastava, M. B. 2001. Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking (MobiCom'01). ACM, New York, 166--179.
[35]
}}Stephens, D. L. and Peurrung, A. J. 2004. Detection of moving radioactive sources using sensor networks. IEEE Trans. Nuc. Sci. 51, 5, 2273--2278.
[36]
}}Sundaresan, A., Varshney, P. K., and Rao, N. S. V. 2007. Distributed detection of a nuclear radiaoactive source using fusion of correlated decisions. In Proceedings of the International Conference on Information Fusion.
[37]
}}Thaeler, A., Ding, M., and Cheng, X. 2005. itps: An improved location discovery scheme for sensor networks with long-range beacons. J. Parall. Distrib. Comput. 65, 98--106.
[38]
}}Trees, H. L. V. 1968. Detection, Estimation and Modulation Theory, Part I. Wiley, New York.
[39]
}}Varshney, P. K. 1997. Distributed Detection and Data Fusion. Springer-Verlag, Berlin.
[40]
}}Wetherill, G. B. 1966. Sequential Methods in Statistics. Methuen and Co.
[41]
}}Wickens, T. D. 2002. Elementary Signal Detection Theory. Oxford University Press, Oxford, UK.
[42]
}}Xu, X., Rao, N. S. V., and Sahni, S. 2010. A computational geometry method for localization using difference of distances. ACM Trans. Sensor. Netw. 6, 2. http: doi.acm.org/10.1145/1689239.1689240.

Cited By

View all
  • (2023)Mapping the Minimum Detectable Activities of Gamma-Ray Sources in a 3-D SceneIEEE Transactions on Nuclear Science10.1109/TNS.2022.322670770:1(64-75)Online publication date: Jan-2023
  • (2023)Heuristic techniques for maximum likelihood localization of radioactive sources via a sensor networkNuclear Science and Techniques10.1007/s41365-023-01267-334:8Online publication date: 28-Aug-2023
  • (2023)Environmental Protection Application: Urban Pollution MonitoringMulti-dimensional Urban Sensing Using Crowdsensing Data10.1007/978-981-19-9006-9_4(95-111)Online publication date: 24-Mar-2023
  • Show More Cited By

Index Terms

  1. Identification of low-level point radioactive sources using a sensor network

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Sensor Networks
    ACM Transactions on Sensor Networks  Volume 7, Issue 3
    September 2010
    220 pages
    ISSN:1550-4859
    EISSN:1550-4867
    DOI:10.1145/1807048
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 04 October 2010
    Accepted: 01 April 2010
    Revised: 01 October 2009
    Received: 01 February 2009
    Published in TOSN Volume 7, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Point radioactive source
    2. detection and localization
    3. sequential probability ratio test

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)11
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 19 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Mapping the Minimum Detectable Activities of Gamma-Ray Sources in a 3-D SceneIEEE Transactions on Nuclear Science10.1109/TNS.2022.322670770:1(64-75)Online publication date: Jan-2023
    • (2023)Heuristic techniques for maximum likelihood localization of radioactive sources via a sensor networkNuclear Science and Techniques10.1007/s41365-023-01267-334:8Online publication date: 28-Aug-2023
    • (2023)Environmental Protection Application: Urban Pollution MonitoringMulti-dimensional Urban Sensing Using Crowdsensing Data10.1007/978-981-19-9006-9_4(95-111)Online publication date: 24-Mar-2023
    • (2022)Particle Filter Based Range Search Approach for Localization of Radioactive MaterialsFrontiers in Energy Research10.3389/fenrg.2021.8079189Online publication date: 31-Jan-2022
    • (2022)Enhancing 3D Gamma-Ray Imaging with Through-Wall Radar2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)10.1109/NSS/MIC44845.2022.10399009(1-7)Online publication date: 5-Nov-2022
    • (2022)Localizing unknown radiation sources by unscented particle filtering based on divide-and-conquer samplingJournal of Nuclear Science and Technology10.1080/00223131.2022.203285859:9(1149-1161)Online publication date: 3-Mar-2022
    • (2021)Improved Gamma-Ray Point Source Quantification in Three Dimensions by Modeling Attenuation in the SceneIEEE Transactions on Nuclear Science10.1109/TNS.2021.311358868:11(2637-2646)Online publication date: Nov-2021
    • (2021)Fisher information-empowered sensing quality quantification for crowdsensing networksNeural Computing and Applications10.1007/s00521-020-05501-633:13(7563-7574)Online publication date: 1-Jul-2021
    • (2020)Eigenvector Centrality-Based Mobile Target Tracking in Wireless Sensor NetworksSensor Technology10.4018/978-1-7998-2454-1.ch054(1150-1167)Online publication date: 2020
    • (2020)Motion Planning and Visual-Inertial Target Tracking for UAV-based Radiation Detection2020 28th Mediterranean Conference on Control and Automation (MED)10.1109/MED48518.2020.9183297(1009-1014)Online publication date: Sep-2020
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media