Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1806689.1806781acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Non-commutative circuits and the sum-of-squares problem

Published: 05 June 2010 Publication History

Abstract

We initiate a direction for proving lower bounds on the size of non-commutative arithmetic circuits. This direction is based on a connection between lower bounds on the size of non-commutative arithmetic circuits and a problem about commutative degree four polynomials, the classical sum-of-squares problem: find the smallest n such that there exists an identity (x12+x22+•• + xk2)• (y1^2+y22+•• + yk2)= f12+f22+ ... +fn2, where each fi = fi(X,Y) is bilinear in X={x1,...,xk} and Y={y1,..., yk}. Over the complex numbers, we show that a sufficiently strong super-linear lower bound on n in, namely, n ≥ k1+ε with ε >0, implies an exponential lower bound on the size of arithmetic circuits computing the non-commutative permanent.
More generally, we consider such sum-of-squares identities for any M polynomial h(X,Y), namely: h(X,Y) = f12+f22+...+fn2.
Again, proving n ≥ k1+ε in for any explicit h over the complex numbers gives an exponential lower bound for the non-commutative permanent. Our proofs relies on several new structure theorems for non-commutative circuits, as well as a non-commutative analog of Valiant's completeness of the permanent.
We proceed to prove such super-linear bounds in some restricted cases. We prove that n ≥ Ω(k6/5) in (1), if f1,..., fn are required to have integer coefficients. Over the real numbers, we construct an explicit M polynomial h such that n in (2) must be at least Ω(k2). Unfortunately, these results do not imply circuit lower bounds. We also present other structural results about non-commutative arithmetic circuits. We show that any non-commutative circuit computing an ordered non-commutative polynomial can be efficiently transformed to a syntactically multilinear circuit computing that polynomial. The permanent, for example, is ordered. Hence, lower bounds on the size of syntactically multilinear circuits computing the permanent imply unrestricted non-commutative lower bounds. We also prove an exponential lower bound on the size of non-commutative syntactically multilinear circuit computing an explicit polynomial. This polynomial is, however, not ordered and an unrestricted circuit lower bound does not follow.

References

[1]
A. Barvinok. A simple polynomial time algorithm to approximatethe permanent within a simply exponential factor. Random Structures and Algorithms 14(1), pages 29--61, 1999.
[2]
W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical computer science (22), pages 317--330, 1983.
[3]
P. Burgisser. Completeness and reduction in algebraic complexity theory. Springer-Verlag Berlin Heidelberg 2000.
[4]
S. Chien and A. Sinclair. Algebras with polynomial identities and computing the determinant. SIAM Journal on Computing 37, pages 252--266, 2007.
[5]
S. Chien, L. Rasmussen and A. Sinclair. Clifford algebras an approximating the permanent. STOC '02, pages 222--231, 2002.
[6]
J. von zur Gathen. Algebraic complexity theory. Ann. Rev. Comp. Sci. (3), pages 317--347, 1988.
[7]
C. Godsil and I. Gutman. On the matching polynomial of a graph. Algebraic Methods in Graph Theory, pages 241--249, 1981.
[8]
L. Hyafil. On the parallel evaluation of multivariate polynomials. SIAM J. Comput. 8(2), pages 120--123, 1979.
[9]
P. Hrubes and A. Yehudayoff. Homogeneous formulas and symmetric polynomials. arXiv:0907.2621
[10]
P. Hrubes, A. Wigderson and A. Yehudayoff. Relationless completeness and separations. To appear in CCC.
[11]
A. Hurwitz. Über die Komposition der quadratischen Formen von beliebigvielen Variabeln. Nach. Ges. der Wiss. Göttingen, pages 309--316, 1898.
[12]
A. Hurwitz. Über die Komposition der quadratischen Formen. Math. Ann., 88, pages 1--25, 1923.
[13]
I. M. James. On the immersion problem for real projective spaces. Bull. Am. Math. Soc., 69, pages 231--238, 1967.
[14]
M. Jerrum, A. Sinclair and E. Vigoda. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51(4), pages 671--697, 2004.
[15]
S. Jukna Boolean function complexity: advances and frontiers. Book in preparation.
[16]
N. Karmarkar, R. Karp, R. Lipton, L. Lovasz and M. Luby. A Monte-Carlo algorithm for estimating the permanent. SIAM Journal on Computing 22(2), pages 284--293, 1993.
[17]
T. Kirkman. On pluquatemions, and horaoid products of sums of n squares. Philos.Mag. (ser. 3), 33, pages 447--459; 494--509, 1848.
[18]
K. Y. Lam. Some new results on composition of quadratic forms. Inventiones Mathematicae., 1985.
[19]
T. Y. Lam and T. Smith. On Yuzvinsky's monomial pairings. Quart. J. Math. Oxford. (2), 44, pages 215--237, 1993.
[20]
K. Mulmuley. On P vs. NP, Geometric Complexity Theory, and the Riemann Hypothesis. Technical Report, Computer Science department, The University of Chicago, 2009.
[21]
N. Nisan. Lower bounds for non-commutative computation. STOC '91, pages 410--418, 1991.
[22]
N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via partial derivatives. Computational Complexity, vol. 6, pages 217--234, 1996.
[23]
A. Pfister. Zur Darstellung definiter Funktionen als Summe von Quadraten. ph Inventiones Mathematicae., 1967.
[24]
J. Radon. Lineare scharen orthogonalen matrizen. Abh. Math. Sem. Univ. Hamburg 1, pages 2--14, 1922.
[25]
R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. Journal of the Association for Computing Machinery 56 (2), 2009. ıgnore
[26]
R. Raz. Elusive functions and lower bounds for arithmetic circuits. To appear in Theory of Computing.
[27]
R. Raz and A. Yehudayoff. Lower bounds and separation for constant depth multilinear circuits. Proceedings of Computational Complexity, pages 128--139, 2008.
[28]
R. Raz, A. Shpilka and A. Yehudayoff. A lower bound for the size of syntactically multilinear arithmetic circuits. SIAM Journal on Computing 38 (4), pages 1624--1647, 2008.
[29]
D. B. Shapiro. Composition of quadratic forms. W. de Gruyter Verlag, 2000.
[30]
. Strassen. Die berechnungskomplexitat von elementarsymmetrischen funktionen und von interpolationskoeffizienten. Numerische Mathematik (20), pages 238--251, 1973.
[31]
V. Strassen. Vermeidung von Divisionen. J. Reine Angew. Math. 264, pages 182--202, 1973.
[32]
L. G. Valiant. Completeness classes in algebra. STOC '79, pages 249--261.
[33]
S. Winograd. On the number of multiplications needed to compute certain functions. Comm. on Pure and Appl. Math. (23), pages 165--179, 1970.
[34]
P. Yiu. Sums of squares formulae with integer coefficients. Canad. Math. Bull., 30, pages 318--324, 1987.
[35]
P. Yiu. On the product of two sums of 16 squares as a sum of squares of integral bilinear forms. Quart. J. Math. Oxford. (2), 41, pages 463--500, 1990.
[36]
S. Yuzvinsky. A series of monomial pairings. phLinear and multilinear algebra, 15, pages 19--119, 1984.

Cited By

View all

Index Terms

  1. Non-commutative circuits and the sum-of-squares problem

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    STOC '10: Proceedings of the forty-second ACM symposium on Theory of computing
    June 2010
    812 pages
    ISBN:9781450300506
    DOI:10.1145/1806689
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 June 2010

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. algebraic complexity
    2. lower bounds

    Qualifiers

    • Research-article

    Conference

    STOC'10
    Sponsor:
    STOC'10: Symposium on Theory of Computing
    June 5 - 8, 2010
    Massachusetts, Cambridge, USA

    Acceptance Rates

    Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)13
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 28 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Regular expression length via arithmetic formula complexityJournal of Computer and System Sciences10.1016/j.jcss.2021.10.004Online publication date: Nov-2021
    • (2021)On the Hardness of the Determinant: Sum of Regular Set-Multilinear CircuitsFundamentals of Computation Theory10.1007/978-3-030-86593-1_30(427-439)Online publication date: 9-Sep-2021
    • (2020)Operational Complexity of Straight Line Programs for Regular LanguagesDescriptional Complexity of Formal Systems10.1007/978-3-030-62536-8_15(180-192)Online publication date: 6-Nov-2020
    • (2016)Noncommutative Valiant's ClassesACM Transactions on Computation Theory10.1145/29562309:1(1-29)Online publication date: 13-Oct-2016
    • (2014)The Complexity of Bounded Register and Skew Arithmetic ComputationComputing and Combinatorics10.1007/978-3-319-08783-2_49(572-583)Online publication date: 2014
    • (2013)Quasipolynomial-Time Identity Testing of Non-commutative and Read-Once Oblivious Algebraic Branching ProgramsProceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science10.1109/FOCS.2013.34(243-252)Online publication date: 26-Oct-2013

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media