Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1654059.1654124acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses

Published: 14 November 2009 Publication History

Abstract

In the quest for cognitive computing, we have built a massively parallel cortical simulator, C2, that incorporates a number of innovations in computation, memory, and communication. Using C2 on LLNL's Dawn Blue Gene/P supercomputer with 147, 456 CPUs and 144 TB of main memory, we report two cortical simulations -- at unprecedented scale -- that effectively saturate the entire memory capacity and refresh it at least every simulated second. The first simulation consists of 1.6 billion neurons and 8.87 trillion synapses with experimentally-measured gray matter thalamocortical connectivity. The second simulation has 900 million neurons and 9 trillion synapses with probabilistic connectivity. We demonstrate nearly perfect weak scaling and attractive strong scaling. The simulations, which incorporate phenomenological spiking neurons, individual learning synapses, axonal delays, and dynamic synaptic channels, exceed the scale of the cat cortex, marking the dawn of a new era in the scale of cortical simulations.

References

[1]
L. F. Abbott and P. Dayan. Theoretical Neuroscience. The MIT Press, Cambridge, Massachusetts, 2001.
[2]
R. Ananthanarayanan and D. S. Modha. Anatomy of a cortical simulator. In Supercomputing 07, 2007.
[3]
R. Ananthanarayanan and D. S. Modha. Scaling, stability, and synchronization in mouse-sized (and larger) cortical simulations. In CNS*2007. BMC Neurosci., 8(Suppl 2): P187, 2007.
[4]
R. Ananthanarayanan, R. Singh, S. Chandra, and D. S. Modha. Imaging the spatio-temporal dynamics of large-scale cortical simulations. In Society for Neuroscience, November 2008.
[5]
A. Bannister. Inter- and intra-laminar connections of pyramidal cells in the neocortex. Neuroscience Research, 53:95--103, 2005.
[6]
C. Beaulieu and M. Colonnier. A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J. Comp. Neurol., 231(2):180--9, 1985.
[7]
T. Binzegger, R. J. Douglas, and K. A. Martin. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci., 24(39):8441--53, 2004.
[8]
V. Braitenberg and A. Schüz. Cortex: Statistics and Geometry of Neuronal Conectivity. Springer, 1998.
[9]
D. Coates, G. Kenyon, and C. Rasmussen. A bird's-eye view of petavision, the world's first petaflop/s neural simulation.
[10]
A. Delorme and S. Thorpe. SpikeNET: An event-driven simulation package for modeling large networks of spiking neurons. Network: Comput. Neural Syst., 14:613:627, 2003.
[11]
A. Destexhe, Z. J. Mainen, and T. J. Sejnowski. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci., 1(3):195--230, 1994.
[12]
M. Djurfeldt, M. Lundqvist, C. Johanssen, M. Rehn, O. Ekeberg, and A. Lansner. Brain-scale simulation of the neocortex on the ibm blue gene/l supercomputer. IBM Journal of Research and Development, 52(1--2):31--42, 2007.
[13]
J. Frye, R. Ananthanarayanan, and D. S. Modha. Towards real-time, mouse-scale cortical simulations. In CoSyNe: Computational and Systems Neuroscience, Salt Lake City, Utah, 2007.
[14]
A. Gara et al. Overview of the Blue Gene/L system architecture. IBM J. Res. Devel., 49:195--212, 2005.
[15]
C. D. Gilbert. Circuitry, architecture, and functional dynamics of visual cortex. Cereb. Cortex, 3(5):373--86, 1993.
[16]
J. E. Gruner, J. C. Hirsch, and C. Sotelo. Ultrastructural features of the isolated suprasylvian gyrus in the cat. J. Comp. Neurol., 154(1):1--27, 1974.
[17]
IBM Blue Gene team. Overview of the IBM Blue Gene/P project. IBM J Research and Development, 52:199--220, 2008.
[18]
E. M. Izhikevich and G. M. Edelman. Large-scale model of mammalian thalamocortical systems. PNAS, 105:3593--3598, 2008.
[19]
E. M. Izhikevich, J. A. Gally, and G. M. Edelman. Spike-timing dynamics of neuronal groups. Cerebral Cortex, 14:933--944, 2004.
[20]
E. G. Jones. The Thalamus. Cambridge University Press, Cambridge, UK, 2007.
[21]
E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of Neural Science. McGraw-Hill Medical, 2000.
[22]
C. Koch. Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York, New York, 1999.
[23]
G. Lakner, I.-H. Chung, G. Cong, S. Fadden, N. Goracke, D. Klepacki, J. Lien, C. Pospiech, S. R. Seelam, and H.-F. Wen. IBM System Blue Gene Solution: Performance Analysis Tools. IBM Redpaper Publication, November, 2008.
[24]
M. Mattia and P. D. Guidice. Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Comput., 12:2305--2329, 2000.
[25]
H. Meuer, E. Strohmaier, J. Dongarra, and H. D. Simon. Top500 supercomputer sites. http://www.top500.org.
[26]
U. Mitzdorf and W. Singer. Prominent excitatory pathways in the cat visual cortex (a 17 and a 18): a current source density analysis of electrically evoked potentials. Exp. Brain Res., 33(3--4):371--394, 1978.
[27]
A. Morrison, C. Mehring, T. Geisel, A. D. Aertsen, and M. Diesmann. Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Comput., 17(8):1776--1801, 2005.
[28]
V. B. Mountcastle. The columnar organization of the neocortex. Brain, 120(4):701--22, 1997.
[29]
R. Nieuwenhuys, H. J. ten Donkelaar, and C. Nicholson. Section 22.11.6.6; Neocortex: Quantitative aspects and folding. In The Central Nervous System of Vertebrates, volume 3, pages 2008--2013. Springer-Verlag, Heidelberg, 1997.
[30]
A. Peters and E. G. Jones. Cerebral Cortex. Plenum Press, New York, 1984.
[31]
C. C. Petersen, T. T. Hahn, M. Mehta, A. Grinvald, and B. Sakmann. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. PNAS, 100(23):13638--13643, 2003.
[32]
A. J. Rockel, R. W. Hirons, and T. P. S. Powell. Number of neurons through the full depth of the neocortex. Proc. Anat. Soc. Great Britain and Ireland, 118:371, 1974.
[33]
E. Ros, R. Carrillo, E. Ortigosa, B. Barbour, and R. Agís. Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural Comput., 18:2959--2993, 2006.
[34]
A. Schüz and G. Palm. Density of neurons and synapses in the cerebral cortex of the mouse. J. Comp. Neurol., 286:442--455, 1989.
[35]
A. J. Sherbondy, R. F. Dougherty, R. Ananthanaraynan, D. S. Modha, and B. A. Wandell. Think global, act local; projectome estimation with BlueMatter. In Proceedings of MICCAI 2009 Lecture Notes in Computer Science, pages 861--868, 2009.
[36]
S. Song, K. D. Miller, and L. F. Abbott. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neurosci., 3:919--926, 2000.

Cited By

View all
  • (2024)Future projections for mammalian whole-brain simulations based on technological trends in related fieldsNeuroscience Research10.1016/j.neures.2024.11.005Online publication date: Nov-2024
  • (2024)The minimal computational substrate of fluid intelligenceCortex10.1016/j.cortex.2024.07.003Online publication date: Aug-2024
  • (2023)Creation of a SaaS-System for Image Analysis in Agriculture Using Artificial Intelligence MethodsSustainable Development Risks and Risk Management10.1007/978-3-031-34256-1_77(441-445)Online publication date: 19-Oct-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SC '09: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis
November 2009
778 pages
ISBN:9781605587448
DOI:10.1145/1654059
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 November 2009

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

Conference

SC '09
Sponsor:

Acceptance Rates

SC '09 Paper Acceptance Rate 59 of 261 submissions, 23%;
Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)61
  • Downloads (Last 6 weeks)14
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Future projections for mammalian whole-brain simulations based on technological trends in related fieldsNeuroscience Research10.1016/j.neures.2024.11.005Online publication date: Nov-2024
  • (2024)The minimal computational substrate of fluid intelligenceCortex10.1016/j.cortex.2024.07.003Online publication date: Aug-2024
  • (2023)Creation of a SaaS-System for Image Analysis in Agriculture Using Artificial Intelligence MethodsSustainable Development Risks and Risk Management10.1007/978-3-031-34256-1_77(441-445)Online publication date: 19-Oct-2023
  • (2022)Stochastic Resonance in Organic Electronic DevicesPolymers10.3390/polym1404074714:4(747)Online publication date: 15-Feb-2022
  • (2022)Nonvolatile Memories in Spiking Neural Network Architectures: Current and Emerging TrendsElectronics10.3390/electronics1110161011:10(1610)Online publication date: 18-May-2022
  • (2022)Young and Aged Neuronal Tissue Dynamics With a Simplified Neuronal Patch Cellular Automata ModelFrontiers in Neuroinformatics10.3389/fninf.2021.76356015Online publication date: 7-Jan-2022
  • (2022)Speculative Distributed Simulation of Very Large Spiking Neural NetworksProceedings of the 2022 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation10.1145/3518997.3531027(93-104)Online publication date: 8-Jun-2022
  • (2022)Cortical Representation of Touch in SilicoNeuroinformatics10.1007/s12021-022-09576-520:4(1013-1039)Online publication date: 29-Apr-2022
  • (2022)Accelerating Brain Simulations with the Fast Multipole MethodEuro-Par 2022: Parallel Processing10.1007/978-3-031-12597-3_24(387-402)Online publication date: 22-Aug-2022
  • (2021)The Future of Mammalian Whole-brain Simulations Estimated from Technological Trends in Supercomputers and Brain Measurements大型計算機と脳計測の技術動向から予測する哺乳類全脳シミュレーションの将来The Brain & Neural Networks10.3902/jnns.28.17228:4(172-182)Online publication date: 5-Dec-2021
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media