Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Moment-Driven Predictive Control of Mean-Field Collective Dynamics

Published: 01 January 2022 Publication History

Abstract

The synthesis of control laws for interacting agent-based dynamics and their mean-field limit is studied. A linearization-based approach is used for the computation of suboptimal feedback laws obtained from the solution of differential matrix Riccati equations. Quantification of dynamic performance of such control laws leads to theoretical estimates on suitable linearization points of the nonlinear dynamics. Subsequently, the feedback laws are embedded into a nonlinear model predictive control framework where the control is updated adaptively in time according to dynamic information on moments of linear mean-field dynamics. The performance and robustness of the proposed methodology is assessed through different numerical experiments in collective dynamics.

References

[1]
M. Aduamoah, B. D. Goddard, J. W. Pearson, and J. C. Roden, PDE-Constrained Optimization Models and Pseudospectral Methods for Multiscale Particle Dynamics, preprint, https://arxiv.org/abs/2009.09850, 2020.
[2]
G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato, and J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), pp. 1901--2005, https://doi.org/10.1142/S0218202519500374.
[3]
G. Albi, M. Bongini, E. Cristiani, and D. Kalise, Invisible control of self-organizing agents leaving unknown environments, SIAM J. Appl. Math., 76 (2016), pp. 1683--1710, https://doi.org/10.1137/15M1017016.
[4]
G. Albi, Y.-P. Choi, M. Fornasier, and D. Kalise, Mean field control hierarchy, Appl. Math. Optim., 76 (2017), pp. 93--135, https://doi.org/10.1007/s00245-017-9429-x.
[5]
G. Albi, M. Herty, and L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus, Commun. Math. Sci., 13 (2015), pp. 1407--1429, https://doi.org/10.4310/CMS.2015.v13.n6.a3.
[6]
G. Albi and L. Pareschi, Binary interaction algorithms for the simulation of flocking and swarming dynamics, Multiscale Model. Simul., 11 (2013), pp. 1--29, https://doi.org/10.1137/120868748.
[7]
G. Albi, L. Pareschi, and M. Zanella, Boltzmann-type control of opinion consensus through leaders, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20140138, https://doi.org/10.1098/rsta.2014.0138.
[8]
B. Azmi, D. Kalise, and K. Kunisch, Optimal feedback law recovery by gradient-augmented sparse polynomial regression, J. Mach. Learn. Res., 22 (2021), pp. 1--32.
[9]
B. Azmi and K. Kunisch, A hybrid finite-dimensional RHC for stabilization of time-varying parabolic equations, SIAM J. Control Optim., 57 (2019), pp. 3496--3526, https://doi.org/10.1137/19M1239787.
[10]
H. Babovsky and H. Neunzert, On a simulation scheme for the Boltzmann equation, Math. Methods Appl. Sci., 8 (1986), pp. 223--233.
[11]
R. Bailo, M. Bongini, J. A. Carrillo, and D. Kalise, Optimal consensus control of the Cucker-Smale model, IFAC-PapersOnLine, 51 (2018), pp. 1--6.
[12]
D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability, Phys. D, 260 (2013), pp. 5--25, https://doi.org/10.1016/j.physd.2012.10.002.
[13]
N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math. Models Methods Appl. Sci., 22 (2012), 1140006, https://doi.org/10.1142/S0218202511400069.
[14]
A. Bobylev and K. Nanbu, Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation, Phys. Rev. E, 61 (2000), 4576.
[15]
L. Boudin and F. Salvarani, A kinetic approach to the study of opinion formation, M2AN Math. Model. Numer. Anal., 43 (2009), pp. 507--522, https://doi.org/10.1051/m2an/2009004.
[16]
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, AIMS Ser. Appl. Math. 2, American Institute of Mathematical Sciences Springfield, 2007.
[17]
L. M. Bricen͂o Arias, D. Kalise, and F. J. Silva, Proximal methods for stationary mean field games with local couplings, SIAM J. Control Optim., 56 (2018), pp. 801--836, https://doi.org/10.1137/16M1095615.
[18]
M. Burger, R. Pinnau, C. Totzeck, O. Tse, and A. Roth, Instantaneous control of interacting particle systems in the mean-field limit, J. Comput. Phys., 405 (2020), 109181, https://doi.org/10.1016/j.jcp.2019.109181.
[19]
E. F. Camacho and C. B. Alba, Model Predictive Control, Springer Science, London, 2013.
[20]
J. A. Canizo, J. A. Carrillo, and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), pp. 515--539.
[21]
M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat, Sparse stabilization and control of alignment models, Math. Models Methods Appl. Sci., 25 (2015), pp. 521--564, https://doi.org/10.1142/S0218202515400059.
[22]
J. A. Carrillo, Y.-P. Choi, and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, in Collective Dynamics from Bacteria to Crowds, Springer, Vienna, 2014, pp. 1--46.
[23]
J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences, Birkhäuser Boston, Boston, 2010, pp. 297--336.
[24]
Y.-P. Choi, D. Kalise, J. Peszek, and A. A. Peters, A collisionless singular Cucker-Smale model with decentralized formation control, SIAM J. Appl. Dyn. Syst., 18 (2019), pp. 1954--1981, https://doi.org/10.1137/19M1241799.
[25]
S. Cordier, L. Pareschi, and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys., 120 (2005), pp. 253--277, https://doi.org/10.1007/s10955-005-5456-0.
[26]
E. Cristiani, B. Piccoli, and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, MS&A. Model. Simul. Appl. 12, Springer, Cham, 2014, https://doi.org/10.1007/978-3-319-06620-2.
[27]
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), pp. 852--862.
[28]
P. Degond, S. Göttlich, M. Herty, and A. Klar, A network model for supply chains with multiple policies, Multiscale Model. Simul., 6 (2007), pp. 820--837, https://doi.org/10.1137/060670316.
[29]
P. Degond, M. Herty, and J.-G. Liu, Flow on sweeping networks, Multiscale Model. Simul., 12 (2014), pp. 538--565, https://doi.org/10.1137/130927061.
[30]
P. Degond, J.-G. Liu, S. Motsch, and V. Panferov, Hydrodynamic Models of Self-organized Dynamics: Derivation and Existence Theory, Methods Appl. Anal., 20 (2013), pp. 89--114, https://doi.org/10.4310/MAA.2013.v20.n2.a1.
[31]
P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), pp. 1193--1215, https://doi.org/10.1142/S0218202508003005.
[32]
G. Dimarco, R. Caflisch, and L. Pareschi, Direct simulation Monte Carlo schemes for coulomb interactions in plasmas, Commun. Appl. Ind. Math., 1 (2010), pp. 72--91.
[33]
S. Dolgov, D. Kalise, and K. Kunisch, Tensor decompositions for high-dimensional Hamilton--Jacobi--Bellman equations, SIAM J. Sci. Comput., 43 (2021), pp. A1625--A1650, https://doi.org/10.1137/19M1305136.
[34]
M. R. D'Orsogna, Y.-L. Chuang, A. L. Bertozzi, and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006), 104302.
[35]
J. R. Dyer, A. Johansson, D. Helbing, I. D. Couzin, and J. Krause, Leadership, consensus decision making and collective behaviour in humans, Philos. Trans. Roy. Soc. B, 364 (2009), pp. 781--789.
[36]
A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, Event-based model predictive control for the cooperation of distributed agents, in Proceedings of the 2012 American Control Conference, 2012, pp. 6473--6478.
[37]
G. Estrada-Rodriguez and H. Gimperlein, Interacting particles with Lévy strategies: Limits of transport equations for swarm robotic systems, SIAM J. Appl. Math., 80 (2020), pp. 476--498, https://doi.org/10.1137/18M1205327.
[38]
M. Fornasier, J. Haskovec, and G. Toscani, Fluid dynamic description of flocking via the Povzner-Boltzmann equation, Phys. D, 240 (2011), pp. 21--31, https://doi.org/10.1016/j.physd.2010.08.003.
[39]
M. Fornasier, S. Lisini, C. Orrieri, and G. Savaré, Mean-field optimal control as gamma-limit of finite agent controls, European J. Appl. Math., 30 (2019), pp. 1153--1186, https://doi.org/10.1017/s0956792519000044.
[40]
M. Fornasier, B. Piccoli, and F. Rossi, Mean-field sparse optimal control, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130400, https://doi.org/10.1098/rsta.2013.0400.
[41]
M. Fornasier and F. Solombrino, Mean-field optimal control, ESAIM Control Optim. Calc. Var., 20 (2014), pp. 1123--1152, https://doi.org/10.1051/cocv/2014009.
[42]
G. Freudenthaler and T. Meurer, PDE-based multi-agent formation control using flatness and backstepping: Analysis, design and robot experiments, Automatica J. IFAC, 115 (2020), 108897, https://doi.org/10.1016/j.automatica.2020.108897.
[43]
J. Garnier, G. Papanicolaou, and T.-W. Yang, Consensus convergence with stochastic effects, Vietnam J. Math., 45 (2017), pp. 51--75, https://doi.org/10.1007/s10013-016-0190-2.
[44]
J. Gómez-Serrano, C. Graham, and J.-Y. Le Boudec, The bounded confidence model of opinion dynamics, Math. Models Methods Appl. Sci., 22 (2012), 1150007, https://doi.org/10.1142/S0218202511500072.
[45]
L. Grüne and J. Pannek, Nonlinear Model Predictive Control, Theory and Algorithms, 2nd ed., Communications and Control Engineering Series, Springer, Cham, 2017.
[46]
S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), pp. 415--435, https://doi.org/10.3934/krm.2008.1.415.
[47]
Y. Han, A. Hegyi, Y. Yuan, S. Hoogendoorn, M. Papageorgiou, and C. Roncoli, Resolving freeway jam waves by discrete first-order model-based predictive control of variable speed limits, Transportation Research Part C: Emerging Technologies, 77 (2017), pp. 405--420.
[48]
R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation, J. Artif. Soc. Soc. Simul., 5 (2002), 2.
[49]
M. Herty and D. Kalise, Suboptimal nonlinear feedback control laws for collective dynamics, in Proceedings of the IEEE 14th International Conference on Control and Automatation (ICCA), 2018, pp. 556--561.
[50]
M. Herty and L. Pareschi, Fokker-Planck asymptotics for traffic flow models, Kinet. Relat. Models, 3 (2010), pp. 165--179, https://doi.org/10.3934/krm.2010.3.165.
[51]
M. Herty, L. Pareschi, and S. Steffensen, Mean--field control and Riccati equations, Netw. Heterog. Media, 10 (2015), pp. 699--715.
[52]
M. Herty and C. Ringhofer, Averaged kinetic models for flows on unstructured networks, Kinet. Relat. Models, 4 (2011), pp. 1081--1096, https://doi.org/10.3934/krm.2011.4.1081.
[53]
M. Herty and C. Ringhofer, Feedback controls for continuous priority models in supply chain management, Comput. Methods Appl. Math., 11 (2011), pp. 206--213, https://doi.org/10.2478/cmam-2011-0011.
[54]
M. Herty and C. Ringhofer, Consistent mean field optimality conditions for interacting agent systems, Commun. Math. Sci., 17 (2019), pp. 1095--1108.
[55]
M. Herty and M. Zanella, Performance bounds for the mean-field limit of constrained dynamics, Discrete Contin. Dyn. Syst., 37 (2017), pp. 2023--2043.
[56]
S. Jin, L. Li, and J.-G. Liu, Random Batch Methods (RBM) for interacting particle systems, J. Comput. Phys., 400 (2020), 108877.
[57]
S. Liu, M. Jacobs, W. Li, L. Nurbekyan, and S. J. Osher, Computational methods for nonlocal mean field games with applications, SIAM J. Numer. Anal., 59 (2021), pp. 2639--2668, https://doi.org/10.1137/20M1334668.
[58]
D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, Constrained model predictive control: Stability and optimality, Automatica J. IFAC, 36 (2000), pp. 789--814.
[59]
S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), pp. 577--621, https://doi.org/10.1137/120901866.
[60]
K.-K. Oh, M.-C. Park, and H.-S. Ahn, A survey of multi-agent formation control, Automatica J. IFAC, 53 (2015), pp. 424--440, https://doi.org/10.1016/j.automatica.2014.10.022.
[61]
A. A. Peters, R. H. Middleton, and O. Mason, Leader tracking in homogeneous vehicle platoons with broadcast delays, Automatica J. IFAC, 50 (2014), pp. 64--74, https://doi.org/10.1016/j.automatica.2013.09.034.
[62]
M. Petrovitch, Sur une maniére d'étendre le théoréme de la moyenne aux équations différentielles du premier ordre, Mathematische Ann., 54 (1901), pp. 417--436, http://eudml.org/doc/158006.
[63]
R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamilton, R. Haulcy, H. Pohlmann, F. Wu, B. Piccoli, B. Siebold, J. Sprinkle, and D. B. Work, Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments, Transp. Research Part C: Emerging Techn., 89 (2018), pp. 205--221.
[64]
G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), pp. 481--496, http://projecteuclid.org/euclid.cms/1175797553.
[65]
A. Tosin and M. Zanella, Kinetic-controlled hydrodynamics for traffic models with driver-assist vehicles, Multiscale Model. Simul., 17 (2019), pp. 716--749, https://doi.org/10.1137/18M1203766.
[66]
P. Varutti, B. Kern, T. Faulwasser, and R. Findeisen, Event-based model predictive control for networked control systems, in Proceedings of the 48th IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, pp. 567--572.

Cited By

View all
  • (2024)Receding horizon control for continuous‐time mean‐field systemsAsian Journal of Control10.1002/asjc.323426:2(728-735)Online publication date: 17-Mar-2024
  • (2023)Robust Feedback Stabilization of Interacting Multi-agent Systems Under UncertaintyApplied Mathematics and Optimization10.1007/s00245-023-10078-289:1Online publication date: 11-Dec-2023

Index Terms

  1. Moment-Driven Predictive Control of Mean-Field Collective Dynamics
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image SIAM Journal on Control and Optimization
            SIAM Journal on Control and Optimization  Volume 60, Issue 2
            DOI:10.1137/sjcodc.60.2
            Issue’s Table of Contents

            Publisher

            Society for Industrial and Applied Mathematics

            United States

            Publication History

            Published: 01 January 2022

            Author Tags

            1. agent-based dynamics
            2. mean-field equations
            3. optimal feedback control
            4. Riccati equations
            5. nonlinear model predictive control

            Author Tags

            1. 68Q25
            2. 68R10
            3. 68U05

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 17 Jan 2025

            Other Metrics

            Citations

            Cited By

            View all
            • (2024)Receding horizon control for continuous‐time mean‐field systemsAsian Journal of Control10.1002/asjc.323426:2(728-735)Online publication date: 17-Mar-2024
            • (2023)Robust Feedback Stabilization of Interacting Multi-agent Systems Under UncertaintyApplied Mathematics and Optimization10.1007/s00245-023-10078-289:1Online publication date: 11-Dec-2023

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media