Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Flux-Mortar Mixed Finite Element Methods on NonMatching Grids

Published: 01 January 2022 Publication History

Abstract

We investigate a mortar technique for mixed finite element approximations of a class of domain decomposition saddle point problems on nonmatching grids in which the variable associated with the essential boundary condition, referred to as flux, is chosen as the coupling variable. It plays the role of a Lagrange multiplier to impose weakly continuity of the variable associated with the natural boundary condition. The flux-mortar variable is incorporated with the use of a discrete extension operator. We present well-posedness and error analysis in an abstract setting under a set of suitable assumptions, followed by a nonoverlapping domain decomposition algorithm that reduces the global problem to a positive definite interface problem. The abstract theory is illustrated for Darcy flow, where the normal flux is the mortar variable used to impose continuity of pressure, and for Stokes flow, where the velocity vector is the mortar variable used to impose continuity of normal stress. In both examples, suitable discrete extension operators are developed and the assumptions from the abstract theory are verified. Numerical studies illustrating the theoretical results are presented for Darcy flow.

References

[1]
R. Araya, C. Harder, D. Paredes, and F. Valentin, Multiscale hybrid-mixed method, SIAM J. Numer. Anal., 51 (2013), pp. 3505--3531, https://doi.org/10.1137/120888223.
[2]
R. Araya, C. Harder, A. H. Poza, and F. Valentin, Multiscale hybrid-mixed method for the Stokes and Brinkman equations-the method, Comput. Methods Appl. Mech. Engrg., 324 (2017), pp. 29--53.
[3]
T. Arbogast, Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems, SIAM J. Numer. Anal., 42 (2004), pp. 576--598, https://doi.org/10.1137/S0036142902406636.
[4]
T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov, Mixed finite element methods on nonmatching multiblock grids, SIAM J. Numer. Anal., 37 (2000), pp. 1295--1315, https://doi.org/10.1137/S0036142996308447.
[5]
T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov, A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6 (2007), pp. 319--346, https://doi.org/10.1137/060662587.
[6]
M. Arshad, E.-J. Park, and D.-w. Shin, Analysis of multiscale mortar mixed approximation of nonlinear elliptic equations, Comput. Math. Appl., 75 (2018), pp. 401--418, https://doi.org/10.1016/j.camwa.2017.09.031.
[7]
G. R. Barrenechea, F. Jaillet, D. Paredes, and F. Valentin, The multiscale hybrid mixed method in general polygonal meshes, Numer. Math., 145 (2020), pp. 197--237.
[8]
F. Ben Belgacem, The mixed mortar finite element method for the incompressible Stokes problem: convergence analysis, SIAM J. Numer. Anal., 37 (2000), pp. 1085--1100, https://doi.org/10.1137/S0036142997329220.
[9]
D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer, New York, 2013.
[10]
W. M. Boon, A parameter-robust iterative method for Stokes-Darcy problems retaining local mass conservation, ESAIM Math. Model. Numer. Anal., 54 (2020), pp. 2045--2067, https://doi.org/10.1051/m2an/2020035.
[11]
W. M. Boon, J. M. Nordbotten, and I. Yotov, Robust discretization of flow in fractured porous media, SIAM J. Numer. Anal., 56 (2018), pp. 2203--2233, https://doi.org/10.1137/17M1139102.
[12]
S. C. Brenner, Korn's inequalities for piecewise H1 vector fields, Math. Comp., 73 (2004), pp. 1067--1087.
[13]
M. Discacciati, E. Miglio, and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), pp. 57--74.
[14]
O. Duran, P. R. Devloo, S. M. Gomes, and F. Valentin, A multiscale hybrid method for darcy's problems using mixed finite element local solvers, Comput. Methods Appl. Mech. Engrg., 354 (2019), pp. 213--244.
[15]
B. Flemisch, M. Darcis, K. Erbertseder, B. Faigle, A. Lauser, K. Mosthaf, S. Müthing, P. Nuske, A. Tatomir, M. Wolff, and R. Helmig, DuMux: DUNE for multi- \phase, component, scale, physics, ...\ flow and transport in porous media, Advances Water Resources, 34 (2011), pp. 1102--1112, https://doi.org/10.1016/j.advwatres.2011.03.007.
[16]
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier--Stokes Equations: Linearized Steady Problems, Vol. I, Springer, New York, 1994.
[17]
J. Galvis and M. Sarkis, Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations, Electron. Trans. Numer. Anal., 26 (2007), pp. 350--384.
[18]
B. Ganis and I. Yotov, Implementation of a mortar mixed finite element method using a multiscale flux basis, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3989--3998, https://doi.org/10.1016/j.cma.2009.09.009.
[19]
V. Girault, D. Vassilev, and I. Yotov, Mortar multiscale finite element methods for Stokes-Darcy flows, Numer. Math., 127 (2014), pp. 93--165, https://doi.org/10.1007/s00211-013-0583-z.
[20]
R. Glowinski and M. F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant, and J. Periaux, eds., SIAM, Philadelphia, 1988, pp. 144--172.
[21]
C. Harder, D. Paredes, and F. Valentin, A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients, J. Comput. Phys., 245 (2013), pp. 107--130, https://doi.org/10.1016/j.jcp.2013.03.019.
[22]
C. Harder and F. Valentin, Foundations of the MHM method, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Springer, New York, 2016, pp. 401--433.
[23]
E. Khattatov and I. Yotov, Domain decomposition and multiscale mortar mixed finite element methods for linear elasticity with weak stress symmetry, ESAIM Math. Model. Numer. Anal., 53 (2019), pp. 2081--2108, https://doi.org/10.1051/m2an/2019057.
[24]
H. H. Kim and C.-O. Lee, A Neumann--Dirichlet preconditioner for a FETI-DP formulation of the two-dimensional Stokes problem with mortar methods, SIAM J. Sci. Comput., 28 (2006), pp. 1133--1152, https://doi.org/10.1137/030601119.
[25]
T. Koch, D. Gläser, K. Weishaupt, S. Ackermann, M. Beck, B. Becker, S. Burbulla, H. Class, E. Coltman, S. Emmert, T. Fetzer, C. Grüninger, K. Heck, J. Hommel, T. Kurz, M. Lipp, F. Mohammadi, S. Scherrer, M. Schneider, G. Seitz, L. Stadler, M. Utz, F. Weinhardt, and B. Flemisch, DuMu\textsuperscriptx 3---an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling, Comput. Math. Appl., 81 (2021), pp. 423--443, https://doi.org/10.1016/j.camwa.2020.02.012.
[26]
W. J. Layton, F. Schieweck, and I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40 (2002), pp. 2195--2218 (2003), https://doi.org/10.1137/S0036142901392766.
[27]
J. Li and O. Widlund, BDDC algorithms for incompressible Stokes equations, SIAM J. Numer. Anal., 44 (2006), pp. 2432--2455, https://doi.org/10.1137/050628556.
[28]
J. M. Nordbotten, W. M. Boon, A. Fumagalli, and E. Keilegavlen, Unified approach to discretization of flow in fractured porous media, Comput. Geosci., 23 (2019), pp. 225--237.
[29]
L. F. Pavarino and O. B. Widlund, Balancing Neumann-Neumann methods for incompressible Stokes equations, Comm. Pure Appl. Math., 55 (2002), pp. 302--335, https://doi.org/10.1002/cpa.10020.
[30]
G. Pencheva and I. Yotov, Balancing domain decomposition for mortar mixed finite element methods, Numer. Linear Algebra Appl., 10 (2003), pp. 159--180, https://doi.org/10.1002/nla.316.
[31]
M. Peszyńska, M. F. Wheeler, and I. Yotov, Mortar upscaling for multiphase flow in porous media, Comput. Geosci., 6 (2002), pp. 73--100, https://doi.org/10.1023/A:1016529113809.
[32]
A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, New York, 1999.
[33]
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Ser. Comput. Math. 23, Springer, New York, 2008.
[34]
L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483--493, https://doi.org/10.2307/2008497.
[35]
R. Stenberg, Analysis of mixed finite elements methods for the Stokes problem: A unified approach, Math. Comp., 42 (1984), pp. 9--23, https://doi.org/10.2307/2007557.
[36]
A. Toselli and O. Widlund, Domain Decomposition Methods---Algorithms and Theory, Springer Ser. Comput. Math. 34, Springer, New York, 2005.
[37]
D. Vassilev, C. Wang, and I. Yotov, Domain decomposition for coupled Stokes and Darcy flows, Comput. Methods Appl. Mech. Engrg., 268 (2014), pp. 264--283, https://doi.org/10.1016/j.cma.2013.09.009.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis  Volume 60, Issue 3
DOI:10.1137/sjnaam.60.3
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2022

Author Tags

  1. flux-mortar method
  2. mixed finite element
  3. domain decomposition
  4. nonmatching grids
  5. a priori error analysis

Author Tags

  1. 65N12
  2. 65N15
  3. 65N55

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media