Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Stable Computation of Generalized Matrix Functions via Polynomial Interpolation

Published: 01 January 2019 Publication History

Abstract

Generalized matrix functions (GMFs) extend the concept of a matrix function to rectangular matrices via the singular value decomposition. Several applications involving directed graphs, Hamiltonian dynamical systems, and optimization problems with low-rank constraints require the action of a GMF of a large, sparse matrix on a vector. We present a new method for applying GMFs to vectors based on Chebyshev interpolation. The method is matrix free and requires no orthogonalization and minimal additional storage. Comparisons against existing approaches based on Lanczos bidiagonalization demonstrate the competitiveness of our approach. We prove that our method is backward stable by generalizing the proof of the backward stability of Clenshaw's algorithm to the matrix case.

References

[1]
F. Andersson, M. Carlsson, and K.-M. Perfekt, Operator-Lipschitz estimates for the singular value functional calculus, Proc. Amer. Math. Soc., 144 (2016), pp. 1867--1875, https://doi.org/10.1090/proc/12843.
[2]
F. Andersson, M. Carlsson, J.-Y. Tourneret, and H. Wendt, A new frequency estimation method for equally and unequally spaced data, IEEE Trans. Signal Process., 62 (2014), pp. 5761--5774, https://doi.org/10.1109/TSP.2014.2358961.
[3]
F. Arrigo and M. Benzi, Edge modification criteria for enhancing the communicability of digraphs, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 443--468, https://doi.org/10.1137/15M1034131.
[4]
F. Arrigo, M. Benzi, and C. Fenu, Computation of generalized matrix functions, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 836--860, https://doi.org/10.1137/15M1049634.
[5]
J. L. Aurentz, GPU Accelerated Polynomial Spectral Transformation Methods, Ph.D. thesis, Washington State University, 2014, https://doi.org/2376/5177.
[6]
J. L. Aurentz, V. Kalantzis, and Y. Saad, Cucheb: A GPU implementation of the filtered Lanczos procedure, Comput. Phys. Commun., 220 (2017), pp. 332--340, https://doi.org/10.1016/j.cpc.2017.06.016.
[7]
J. Baglama and L. Reichel, Restarted block Lanczos bidiagonalization methods, Numer. Algorithms, 43 (2006), pp. 251--272, https://doi.org/10.1007/s11075-006-9057-z.
[8]
M. Benzi, D. A. Bini, D. Kressner, H. Munthe-Kaas, and C. Van Loan, Exploiting Hidden Structure in Matrix Computations: Algorithms and Applications, Lecture Notes in Math. 2173, Springer, New York, 2016.
[9]
M. Benzi, E. Estrada, and C. Klymko, Ranking hubs and authorities using matrix functions, Linear Algebra Appl., 438 (2013), pp. 2447--2474, https://doi.org/10.1016/j.laa.2012.10.022.
[10]
G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, AMS, Providence, RI, 2013.
[11]
C. W. Clenshaw, A note on the summation of Chebyshev series, Math. Comp., 9 (1955), pp. 118--120, https://doi.org/10.1090/S0025-5718-1955-0071856-0.
[12]
J. J. Crofts, E. Estrada, D. J. Higham, and A. Taylor, Mapping directed networks, Electron. Trans. Numer. Anal., 37 (2010), pp. 337--350.
[13]
T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Soft., 38 (2011), pp. 1:1--1:25, https://doi.org/10.1145/2049662.2049663.
[14]
N. Del Buono, L. Lopez, and R. Peluso, Computation of the exponential of large sparse skew-symmetric matrices, SIAM J. Sci. Comput., 27 (2005), pp. 278--293, https://doi.org/10.1137/030600758.
[15]
N. Del Buono, L. Lopez, and T. Politi, Computation of functions of Hamiltonian and skew-symmetric matrices, Math. Comput. Simulation, 79 (2008), pp. 1284--1297, https://doi.org/10.1016/j.matcom.2008.03.011.
[16]
T. A. Driscoll, N. Hale, and L. N. Trefethen, eds., Chebfun Guide, Pafnuty Publications, Oxford, 2014.
[17]
V. L. Druskin and L. A. Knizhnerman, Two polynomial methods of calculating functions of symmetric matrices, U.S.S.R. Comput. Math. and Math. Phys., 29 (1989), pp. 112--121, https://doi.org/10.1016/S0041-5553(89)80020-5.
[18]
H.-R. Fang and Y. Saad, A filtered Lanczos procedure for extreme and interior eigenvalue problems, SIAM J. Sci. Comput., 34 (2012), pp. A2220--A2246, https://doi.org/10.1137/110836535.
[19]
F. R. Gantmacher, The Theory of Matrices. Vol. 1, AMS Chelsea Publishing, Providence, RI, 2000.
[20]
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, Baltimore, MD, 2013.
[21]
M. Hanke, J. Nagy, and R. Plemmons, Preconditioned iterative regularization for ill-posed problems, in Numerical Linear Algebra: Proceedings of the Conference in Numerical Linear Algebra and Scientific Computation (Kent, OH, 1992), L. Reichel, A. Ruttan, and R. S. Varga, eds., de Gruyter, Berlin, 1993, pp. 141--163.
[22]
J. B. Hawkins and A. Ben-Israel, On generalized matrix functions, Linear Multilinear Algebra, 1 (1973), pp. 163--171, https://doi.org/10.1080/03081087308817015.
[23]
N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002, https://doi.org/10.1137/1.9780898718027.
[24]
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008, https://doi.org/10.1137/1.9780898717778.
[25]
L. Katz, A new status index derived from sociometric analysis, Psychometrika, 18 (1953), pp. 39--43, https://doi.org/10.1007/BF02289026.
[26]
J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, CRC Press, Boca Raton, FL, 2003.
[27]
D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, Cham, 2014.
[28]
V. Noferini, A formula for the Fréchet derivative of a generalized matrix function, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 434--457, https://doi.org/10.1137/16m1072851.
[29]
H. D. Simon and H. Zha, Low-rank matrix approximation using the Lanczos bidiagonalization process with applications, SIAM J. Sci. Comput., 21 (2000), pp. 2257--2274, https://doi.org/10.1137/s1064827597327309.
[30]
A. Smoktunowicz, Backward stability of Clenshaw's algorithm, BIT, 42 (2002), pp. 600--610, https://doi.org/10.1023/A:1022001931526.
[31]
L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, 2013.
[32]
Y. Zhou and R.-C. Li, Bounding the spectrum of large Hermitian matrices, Linear Algebra Appl., 435 (2011), pp. 480--493, https://doi.org/10.1016/j.laa.2010.06.034.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications  Volume 40, Issue 1
2019
369 pages
ISSN:0895-4798
DOI:10.1137/sjmael.40.1
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2019

Author Tags

  1. generalized matrix functions
  2. Chebyshev polynomials
  3. Clenshaw's algorithm
  4. graph theory

Author Tags

  1. 65F60
  2. 15A16
  3. 05C50

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media