Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Targeted Pseudorandom Generators, Simulation Advice Generators, and Derandomizing Logspace

Published: 01 January 2021 Publication History

Abstract

Assume that for every derandomization result for logspace algorithms, there is a pseudorandom generator strong enough to nearly recover the derandomization by iterating over all seeds and taking a majority vote. We prove under a precise version of this assumption that ${BPL} \subseteq \bigcap_{\alpha > 0} {DSPACE}(\log^{1 + \alpha} n)$. We strengthen the theorem to an equivalence by considering two generalizations of the concept of a pseudorandom generator against logspace. A targeted pseudorandom generator against logspace takes as input a short uniform random seed and a finite automaton; it outputs a long bitstring that looks random to that particular automaton. A simulation advice generator for logspace stretches a small uniform random seed into a long advice string; the requirement is that there is some logspace algorithm that, given a finite automaton and this advice string, simulates the automaton reading a long uniform random input. We prove that $\bigcap_{\alpha > 0} {promise}-{BPSPACE}(\log^{1 + \alpha} n) = \bigcap_{\alpha > 0} {promise}-{DSPACE}(\log^{1 + \alpha} n)$ if and only if for every targeted pseudorandom generator against logspace, there is a simulation advice generator for logspace with similar parameters. Finally, we observe that in a certain uniform setting (namely, if we only worry about sequences of automata that can be generated in logspace), targeted pseudorandom generators against logspace can be transformed into simulation advice generators with similar parameters.

References

[1]
R. Armoni, On the derandomization of space-bounded computations, in Randomization and Approximation Techniques in Computer Science, M. Luby, J. D. P. Rolim, and M. Serna, eds., Springer, Berlin, 1998, pp. 47--59.
[2]
B. Ayd\inl\ioğlu, D. Gutfreund, J. M. Hitchcock, and A. Kawachi, Derandomizing Arthur-Merlin games and approximate counting implies exponential-size lower bounds, Comput. Complexity, 20 (2011), pp. 329--366, https://doi.org/10.1007/s00037-011-0010-8.
[3]
B. Ayd\inl\ioğlu and D. van Melkebeek, Nondeterministic circuit lower bounds from mildly derandomizing Arthur-Merlin games, Comput. Complexity, 26 (2017), pp. 79--118, https://doi.org/10.1007/s00037-014-0095-y.
[4]
M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudorandom bits, SIAM J. Comput., 13 (1984), pp. 850--864, https://doi.org/10.1137/0213053.
[5]
J.-Y. Cai, V. T. Chakaravarthy, and D. van Melkebeek, Time-space tradeoff in derandomizing probabilistic logspace, Theory Comput. Syst., 39 (2006), pp. 189--208, https://doi.org/10.1007/s00224-005-1264-9.
[6]
L. Fortnow, Comparing notions of full derandomization, in Proceedings of the 16th Annual Conference on Computational Complexity, CCC '01, 2001, IEEE Computer Society, p. 28.
[7]
O. Goldreich, In a world of ${P}={BPP}$, in Studies in Complexity and Cryptography, Lecture Notes in Comput. Sci. 6650, Springer, Berlin, 2011, pp. 191--232, https://doi.org/10.1007/978-3-642-22670-0_20.
[8]
O. Goldreich, Two comments on targeted canonical derandomizers, in Electronic Colloquium on Computational Complexity (ECCC), Vol. 18, Weizemann Institute of Science, Rehovot, Israel, 2011, p. 11.
[9]
V. Guruswami, C. Umans, and S. Vadhan, Unbalanced expanders and randomness extractors from Parvaresh--Vardy codes, J. ACM, 56 (2009), https://doi.org/10.1145/1538902.1538904.
[10]
J. H\aastad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom generator from any one-way function, SIAM J. Comput., 28 (1999), pp. 1364--1396, https://doi.org/10.1137/S0097539793244708.
[11]
R. Impagliazzo, V. Kabanets, and A. Wigderson, In search of an easy witness: Exponential time vs. probabilistic polynomial time, J. Comput. System Sci., 65 (2002), pp. 672--694, https://doi.org/10.1016/S0022-0000(02)00024-7, http://www.sciencedirect.com/science/article/pii/S0022000002000247.
[12]
R. Impagliazzo, N. Nisan, and A. Wigderson, Pseudorandomness for network algorithms, in Proceedings of the 26th Annual ACM Symposium on Theory of Computing, STOC '94, ACM, New York, 1994, pp. 356--364, https://doi.org/10.1145/195058.195190.
[13]
R. Impagliazzo and A. Wigderson, ${P}={BPP}$ if ${E}$ requires exponential circuits: Derandomizing the XOR lemma, in Proceedings of the 29th Annual Symposium on Theory of Computing, STOC '97, ACM, New York, 1999, pp. 220--229.
[14]
R. Impagliazzo and A. Wigderson, Randomness vs time: Derandomization under a uniform assumption, J. Comput. System Sci., 63 (2001), pp. 672--688, https://doi.org/10.1006/jcss.2001.1780, http://www.sciencedirect.com/science/article/pii/S0022000001917805.
[15]
V. Kabanets and R. Impagliazzo, Derandomizing polynomial identity tests means proving circuit lower bounds, Comput. Complexity, 13 (2004), pp. 1--46, https://doi.org/10.1007/s00037-004-0182-6.
[16]
D. M. Kane, J. Nelson, and D. P. Woodruff, Revisiting Norm Estimation in Data Streams, preprint, arXiv:0811.3648, 2008.
[17]
J. Kinne, D. van Melkebeek, and R. Shaltiel, Pseudorandom generators, typically-correct derandomization, and circuit lower bounds, Comput. Complexity, 21 (2012), pp. 3--61, https://doi.org/10.1007/s00037-011-0019-z.
[18]
A. R. Klivans and D. van Melkebeek, Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses, SIAM J. Comput., 31 (2002), pp. 1501--1526, https://doi.org/10.1137/S0097539700389652.
[19]
R. E. Ladner and N. A. Lynch, Relativization of questions about log space computability, Math. Systems Theory, 10 (1976), pp. 19--32, https://doi.org/10.1007/BF01683260.
[20]
N. Nisan, Pseudorandom generators for space-bounded computation, Combinatorica, 12 (1992), pp. 449--461, https://doi.org/10.1007/BF01305237.
[21]
N. Nisan, ${RL}\subseteq {\rm SC}$, Comput. Complexity, 4 (1994), pp. 1--11, https://doi.org/10.1007/BF01205052.
[22]
N. Nisan and A. Wigderson, Hardness vs. randomness, J. Comput. System Sci., 49 (1994), pp. 149--167, https://doi.org/10.1016/S0022-0000(05)80043-1.
[23]
I. C. Oliveira and R. Santhanam, Pseudodeterministic constructions in subexponential time, in Proceedings of the 49th Annual Symposium on Theory of Computing, STOC '17, ACM, New York, 2017, pp. 665--677, https://doi.org/10.1145/3055399.3055500.
[24]
R. Raz and O. Reingold, On recycling the randomness of states in space bounded computation, in Proceedings of the 31st Annual Symposium on Theory of Computing, STOC '99, ACM, New York, 1999, pp. 159--168, https://doi.org/10.1145/301250.301294.
[25]
O. Reingold, Randomness vs. Memory: Prospects and Barriers, 2010, https://omereingold.files.wordpress.com/2014/10/rlbarriers.pptx.
[26]
O. Reingold, L. Trevisan, and S. Vadhan, Pseudorandom walks on regular digraphs and the $RL$ vs. $L$ problem, in Proceedings of the 38th Annual Symposium on Theory of Computing, STOC '06, ACM, New York, 2006, pp. 457--466, https://doi.org/10.1145/1132516.1132583.
[27]
M. Saks and S. Zhou, ${BP}_{H}{SPACE}(S)\subseteq{DSPACE}(S^{3/2})$, J. Comput. System Sci., 58 (1999), pp. 376--403, https://doi.org/10.1006/jcss.1998.1616, http://www.sciencedirect.com/science/article/pii/S0022000098916166.
[28]
C. Umans, Pseudo-random generators for all hardnesses, J. Comput. System Sci., 67 (2003), pp. 419--440, https://doi.org/10.1016/S0022-0000(03)00046-1, http://www.sciencedirect.com/science/article/pii/S0022000003000461. Special Issue on STOC 2002.
[29]
R. Williams, Improving exhaustive search implies superpolynomial lower bounds, SIAM J. Comput., 42 (2013), pp. 1218--1244, https://doi.org/10.1137/10080703X.
[30]
C. B. Wilson, A measure of relativized space which is faithful with respect to depth, J. Comput. System Sci., 36 (1988), pp. 303--312, https://doi.org/10.1016/0022-0000(88)90031-1.
[31]
A. C. Yao, Theory and application of trapdoor functions, in Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, FOCS '82, IEEE, New York, 1982, pp. 80--91.
[32]
D. Zuckerman, Randomness-optimal oblivious sampling, Random Structures Algorithms, 11 (1997), pp. 345--367, https://dl.acm.org/doi/10.5555/280032.280035.

Cited By

View all
  • (2023)Approximating Iterated Multiplication of Stochastic Matrices in Small SpaceProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585181(35-45)Online publication date: 2-Jun-2023

Index Terms

  1. Targeted Pseudorandom Generators, Simulation Advice Generators, and Derandomizing Logspace
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image SIAM Journal on Computing
            SIAM Journal on Computing  Volume 51, Issue 2
            DOI:10.1137/smjcat.51.2
            Issue’s Table of Contents

            Publisher

            Society for Industrial and Applied Mathematics

            United States

            Publication History

            Published: 01 January 2021

            Author Tags

            1. pseudorandom generators
            2. derandomization
            3. space complexity

            Author Tags

            1. 68Q15
            2. 68Q87

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 12 Nov 2024

            Other Metrics

            Citations

            Cited By

            View all
            • (2023)Approximating Iterated Multiplication of Stochastic Matrices in Small SpaceProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585181(35-45)Online publication date: 2-Jun-2023

            View Options

            View options

            Get Access

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media