Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Augmented Implicitly Restarted Lanczos Bidiagonalization Methods

Published: 01 January 2005 Publication History

Abstract

New restarted Lanczos bidiagonalization methods for the computation of a few of the largest or smallest singular values of a large matrix are presented. Restarting is carried out by augmentation of Krylov subspaces that arise naturally in the standard Lanczos bidiagonalization method. The augmenting vectors are associated with certain Ritz or harmonic Ritz vectors. Computed examples show the new methods to be competitive with available schemes.

References

[1]
J. Baglama, D. Calvetti, L. Reichel, Iterative methods for the computation of a few eigenvalues of a large symmetric matrix, BIT, 36 (1996), 400–421, International Linear Algebra Year (Toulouse, 1995)
[2]
J. Baglama, D. Calvetti, L. Reichel, IRBL: an implicitly restarted block‐Lanczos method for large‐scale Hermitian eigenproblems, SIAM J. Sci. Comput., 24 (2003), 1650–1677
[3]
J. Baglama, D. Calvetti, L. Reichel, Algorithm 827: irbleigs: a MATLAB program for computing a few eigenpairs of a large sparse Hermitian matrix, ACM Trans. Math. Software, 29 (2003), 337–348
[4]
Åke Björck, Numerical methods for least squares problems, Society for Industrial and Applied Mathematics (SIAM), 1996xviii+408
[5]
Åke Björck, Eric Grimme, Paul Van Dooren, An implicit shift bidiagonalization algorithmfor ill‐posed systems, BIT, 34 (1994), 510–534
[6]
James Bunch, Christopher Nielsen, Updating the singular value decomposition, Numer. Math., 31 (1978/79), 111–129
[7]
D. Calvetti, L. Reichel, D. Sorensen, An implicitly restarted Lanczos method for large symmetric eigenvalue problems, Electron. Trans. Numer. Anal., 2 (1994), 1–21
[8]
P. Comon and G. H. Golub, Tracking a few extreme singular values and vectors in signal processing, Proc. IEEE, 78 (1990), pp. 1327–1343.
[9]
I. S. Duff, R. G. Grimes, and J. G. Lewis, User’s Guide for the Harwell‐Boeing Sparse Matrix Collection (Release I), Technical report TR/PA/92/86, CERFACS, Toulouse, France, 1992.
The matrices are available at http://math.nist.gov/MatrixMarket/.
[10]
G. Golub, W. Kahan, Calculating the singular values and pseudo‐inverse of a matrix, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 205–224
[11]
Gene Golub, Charles Van Loan, Matrix computations, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, 1996xxx+698
[12]
M. Gu and S. C. Eisenstat, A Stable and Fast Algorithm for Updating the Singular Value Decomposition, Technical report YALEU/DCS/RR‐966, Department of Computer Science, Yale University, New Haven, CT, 1993.
[13]
Michiel Hochstenbach, A Jacobi‐Davidson type SVD method, SIAM J. Sci. Comput., 23 (2001), 606–628, Copper Mountain Conference (2000)
[14]
M. E. Hochstenbach, Harmonic and refined extraction methods for the singular value problem, with applications to least‐squares problems, BIT, to appear.
[15]
Suely Oliveira, A convergence proof of an iterative subspace method for eigenvalues problems, Springer, Berlin, 1997, 316–325
[16]
Zhongxiao Jia, Datian Niu, An implicitly restarted refined bidiagonalization Lanczos method for computing a partial singular value decomposition, SIAM J. Matrix Anal. Appl., 25 (2003), 246–265
[17]
E. Kokiopoulou, C. Bekas, E. Gallopoulos, Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization, Appl. Numer. Math., 49 (2004), 39–61
[18]
R. M. Larsen, Lanczos bidiagonalization with partial reorthogonalization, Chapter of Ph.D. thesis, Department of Computer Science, University of Aarhus, Aarhus, Denmark, 1998; also available online from http://soi.stanford.edu/∼rmunk/.
[19]
Peter Läuchli, Jordan‐Elimination und Ausgleichung nach kleinsten Quadraten, Numer. Math., 3 (1961), 226–240
[20]
R. Lehoucq, Implicitly restarted Arnoldi methods and subspace iteration, SIAM J. Matrix Anal. Appl., 23 (2001), 551–562
[21]
R. Lehoucq, D. Sorensen, Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM J. Matrix Anal. Appl., 17 (1996), 789–821
[22]
R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large‐Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Software Environ. Tools 6, SIAM, Philadelphia, 1998.
[23]
The MathWorks, Inc., MATLAB, Version 6.5 R13, Natick, MA, 2002.
[24]
Ronald Morgan, Computing interior eigenvalues of large matrices, Linear Algebra Appl., 154/156 (1991), 289–309
[25]
Ronald Morgan, On restarting the Arnoldi method for large nonsymmetric eigenvalue problems, Math. Comp., 65 (1996), 1213–1230
[26]
R. B. Morgan and M. Zeng, Harmonic Restarted Arnoldi Algorithm for Calculating Eigenvalues and Determining Multiplicity, preprint, 2003.
[27]
Chris Paige, Beresford Parlett, Henk van der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra Appl., 2 (1995), 115–133
[28]
Horst Simon, Hongyuan Zha, Low‐rank matrix approximation using the Lanczos bidiagonalization process with applications, SIAM J. Sci. Comput., 21 (2000), 2257–2274
[29]
D. Sorensen, Implicit application of polynomial filters in a k‐step Arnoldi method, SIAM J. Matrix Anal. Appl., 13 (1992), 357–385
[30]
D. C. Sorensen, Numerical methods for large eigenvalue problems, Acta Numer., 11 (2002), pp. 519–584.
[31]
Andreas Stathopoulos, Yousef Saad, Restarting techniques for the (Jacobi‐)Davidson symmetric eigenvalue methods, Electron. Trans. Numer. Anal., 7 (1998), 163–181, Large scale eigenvalue problems (Argonne, IL, 1997)
[32]
Andreas Stathopoulos, Yousef Saad, Kesheng Wu, Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi methods, SIAM J. Sci. Comput., 19 (1998), 227–245, Special issue on iterative methods (Copper Mountain, CO, 1996)
[33]
Kesheng Wu, Horst Simon, Thick‐restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix Anal. Appl., 22 (2000), 602–616

Cited By

View all
  • (2024)Algorithm 1043: Faster Randomized SVD with Dynamic ShiftsACM Transactions on Mathematical Software10.1145/366062950:2(1-27)Online publication date: 23-Apr-2024
  • (2024)Graph Signal Diffusion Model for Collaborative FilteringProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657759(1380-1390)Online publication date: 10-Jul-2024
  • (2024)Learning intrinsic shape representations via spectral mesh convolutionsNeurocomputing10.1016/j.neucom.2024.128152598:COnline publication date: 14-Sep-2024
  • Show More Cited By

Index Terms

  1. Augmented Implicitly Restarted Lanczos Bidiagonalization Methods
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image SIAM Journal on Scientific Computing
    SIAM Journal on Scientific Computing  Volume 27, Issue 1
    2005
    367 pages

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 01 January 2005

    Author Tags

    1. 65F15
    2. 65F50
    3. 15A18

    Author Tags

    1. singular value computation
    2. partial singular value decomposition
    3. iterative method
    4. large-scale computation

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Algorithm 1043: Faster Randomized SVD with Dynamic ShiftsACM Transactions on Mathematical Software10.1145/366062950:2(1-27)Online publication date: 23-Apr-2024
    • (2024)Graph Signal Diffusion Model for Collaborative FilteringProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657759(1380-1390)Online publication date: 10-Jul-2024
    • (2024)Learning intrinsic shape representations via spectral mesh convolutionsNeurocomputing10.1016/j.neucom.2024.128152598:COnline publication date: 14-Sep-2024
    • (2024)Tensor Golub–Kahan method based on Einstein productJournal of Computational and Applied Mathematics10.1016/j.cam.2024.116048451:COnline publication date: 1-Dec-2024
    • (2024)Thick-restarted joint Lanczos bidiagonalization for the GSVDJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115506440:COnline publication date: 1-Apr-2024
    • (2023)Intensity profile projectionProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3667131(23259-23296)Online publication date: 10-Dec-2023
    • (2023)Static and Streaming Tucker Decomposition for Dense TensorsACM Transactions on Knowledge Discovery from Data10.1145/356868217:5(1-34)Online publication date: 27-Feb-2023
    • (2023)Fine-tuning Partition-aware Item Similarities for Efficient and Scalable RecommendationProceedings of the ACM Web Conference 202310.1145/3543507.3583240(823-832)Online publication date: 30-Apr-2023
    • (2023)Graph Summarization via Node Grouping: A Spectral AlgorithmProceedings of the Sixteenth ACM International Conference on Web Search and Data Mining10.1145/3539597.3570441(742-750)Online publication date: 27-Feb-2023
    • (2023)Compression of tokamak boundary plasma simulation data using a maximum volume algorithm for matrix skeleton decompositionJournal of Computational Physics10.1016/j.jcp.2023.112089484:COnline publication date: 1-Jul-2023
    • Show More Cited By

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media