Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Feature-Driven Visual Analytics of Chaotic Parameter-Dependent Movement

Published: 01 June 2015 Publication History

Abstract

Analyzing movements in their spatial and temporal context is a complex task. We are additionally interested in understanding the movements' dependency on parameters that govern the processes behind the movement. We propose a visual analytics approach combining analytic, visual, and interactive means to deal with the added complexity. The key idea is to perform an analytical extraction of features that capture distinct movement characteristics. Different parameter configurations and extracted features are then visualized in a compact fashion to facilitate an overview of the data. Interaction enables the user to access details about features, to compare features, and to relate features back to the original movement. We instantiate our approach with a repository of more than twenty accepted and novel features to help analysts in gaining insight into simulations of chaotic behavior of thousands of entities over thousands of data points. Domain experts applied our solution successfully to study dynamic groups in such movements in relation to thousands of parameter configurations.

References

[1]
<label>{AAB*13a}</label> Andrienko G., Andrienko N., Bak P., Keim D., Wrobel S.: Visual Analytics of Movement. Springer, 2013. 1, 2
[2]
<label>{AAB*13b}</label> Andrienko N., Andrienko G., Barrett L., Dostie M., Henzi P.: Space Transformation for Understanding Group Movement. IEEE Trans. on Visualization and Computer Graphics Volume 19, Issue 12 2013. 2
[3]
<label>{BHMU11}</label> Bittig A.T., Haack F., Maus C., Uhrmacher A.M.: Adapting Rule-based Model Descriptions for Simulating in Continuous and Hybrid Space. In CMSB 2011, ACM. 7
[4]
<label>{BM10}</label> Bruckner S., Möller T.: Result-Driven Exploration of Simulation Parameter Spaces for Visual Effects Design. IEEE Trans. on Visualization and Computer Graphics Volume 16, Issue 6 2010. 2
[5]
<label>{BPFG11}</label> Berger W., Piringer H., Filzmoser P., Gröller E.: Uncertainty-Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction. Computer Graphics Forum Volume 30, Issue 3 2011. 2
[6]
<label>{BSM*13}</label> Bergner S., Sedlmair M., Möller T., Abdolyousefi S.N., Saad A.: ParaGlide: Interactive Parameter Space Partitioning for Computer Simulations. IEEE Trans. on Visualization and Computer Graphics Volume 19, Issue 9 2013. 2
[7]
<label>{BvLA*11}</label> Bremm S., von Landesberger T., Andrienko G., Andrienko N., Schreck T.: Interactive Analysis of Object Group Changes over Time</otherTitle>. In <otherTitle>EuroVA 2011. 3
[8]
<label>{DV10}</label> Demšar U., Virrantaus K.: Space-Time Density of Trajectories: Exploring Spatio-Temporal Patterns in Movement Data. Int. Journal of Geographical Information Science Volume 24, Issue 10 2010. 4
[9]
<label>{GH97}</label> Garland M., Heckbert P.S.: Surface simplification using quadric error metrics. In SIGGRAPH 1997, ACM. 5
[10]
<label>{GYHZ13}</label> Guo H., Yuan X., Huang J., Zhu X.: Coupled Ensemble Flow Line Advection and Analysis. IEEE Trans. on Visualization and Computer Graphics Volume 19, Issue 12 2013. 3
[11]
<label>{HB03}</label> Harrower M.A., Brewer C.A.: "http://ColorBrewer.org": An Online Tool for Selecting Color Schemes for Maps. The Cartographic Journal Volume 40, Issue 1 2003. 5
[12]
<label>{HBRU13}</label> Haack F., Burrage K., Redmer R., Uhrmacher A.: Studying the Role of Lipid Rafts on Protein Receptor Bindings with Cellular Automata. IEEE/ACM Trans. on Computational Biology and Bioinformatics Volume 10, Issue 3 2013. 2
[13]
<label>{JYJ11}</label> Jeung H., Yiu M.L., Jensen C.S.: Trajectory Pattern Mining. In Computing with Spatial Trajectories. Springer, 2011. 4
[14]
<label>{Kho06}</label> Kholodenko B.N.: Cell-Signalling Dynamics in Time and Space. Nature Reviews Molecular Cell Biology Volume 7, Issue 3 2006. 2
[15]
<label>{KYS09}</label> Kikuchi A., Yamamoto H., Sato A.: Selective Activation Mechanisms of Wnt Signaling Pathways. Trends in Cell Biology Volume 19, Issue 3 2009. 2
[16]
<label>{LMK07}</label> Lam H., Munzner T., Kincaid R.: Overview Use in Multiple Visual Information Resolution Interfaces. IEEE Trans. on Visualization and Computer Graphics Volume 13, Issue 6 2007. 6
[17]
<label>{LRHS14}</label> Luboschik M., Rybacki S., Haack F., Schulz H.-J.: Supporting the Integrated Visual Analysis of Input Parameters and Simulation Trajectories. Computers & Graphics Volume 39 2014. 2, 8
[18]
<label>{LTB*12}</label> Luboschik M., Tominski C., Bittig A.T., Uhrmacher A.M., Schumann H.: Towards Interactive Visual Analysis of Microscopic-Level Simulation Data. In SIGRAD 2012, Linköping University Electronic Press. 8
[19]
<label>{MAB*97}</label> Marks J., Andalman B., Beardsley P.A., Freeman W., Gibson S., Hodgins J., Kang T., Mirtich B., Pfister H., Ruml W., Ryall K., Seims J., Shieber S.: Design Galleries: A General Approach to Setting Parameters for Computer Graphics and Animation. In SIGGRAPH 1997, ACM. 2
[20]
<label>{MGS*14}</label> Matković K., Gračanin D., Splechtna R., Jelović M., Stehno B., Hauser H., Purgathofer W.: Visual Analytics for Complex Engineering Systems: Hybrid Visual Steering of Simulation Ensembles. IEEE Trans. on Visualization and Computer Graphics Volume 20, Issue 12 2014. 3
[21]
<label>{NBPH06}</label> Nicolau D.V., Burrage K., Parton R.G., Hancock J.F.: Identifying Optimal Lipid Raft Characteristics Required To Promote Nanoscale Protein-Protein Interactions on the Plasma Membrane. Molecular and Cellular Biology Volume 26, Issue 1 2006. 2
[22]
<label>{OJ14}</label> Obermaier H., Joy K.: Future Challenges for Ensemble Visualization. IEEE Computer Graphics and Applications Volume 34, Issue 3 2014. 1
[23]
<label>{PBK10}</label> Piringer H., Berger W., Krasser J.: Hyper-MoVal: Interactive Visual Validation of Regression Models for Real-Time Simulation. Computer Graphics Forum Volume 29, Issue 3 2010. 2
[24]
<label>{RPN*08}</label> Rinzivillo S., Pedreschi D., Nanni M., Giannotti F., Andrienko N., Andrienko G.: Visually Driven Analysis of Movement Data by Progressive Clustering. Information Visualization Volume 7, Issue 3-4 2008. 2
[25]
<label>{RPS01}</label> Reinders F., Post F.H., Spoelder H.J.: Visualization of Time-Dependent Data with Feature Tracking and Event Detection. The Visual Computer Volume 17, Issue 1 2001. 2
[26]
<label>{RTBW*09}</label> Reda K., Tantipathananandh C., Berger-Wolf T., Leigh J., Johnson A.: SocioScape - a Tool for Interactive Exploration of Spatio-Temporal Group Dynamics in Social Networks. Poster at InfoVis, 2009. 2
[27]
<label>{SC07}</label> Salvador S., Chan P.: Toward Accurate Dynamic Time Warping in Linear Time and Space. Intelligent Data Analysis Volume 11, Issue 5 2007. 5
[28]
<label>{SHB*14}</label> Sedlmair M., Heinzl C., Bruckner S., Piringer H., Möller T.: Visual parameter space analysis: A conceptual framework. IEEE Trans. on Visualization and Computer Graphics Volume 20, Issue 12 2014. 2
[29]
<label>{TPRH11}</label> Turkay C., Parulek J., Reuter N., Hauser H.: Interactive visual analysis of temporal cluster structures. Computer Graphics Forum Volume 30, Issue 3 2011. 3
[30]
<label>{TTNtW10}</label> Takahashi K., Tânase-Nicola S., ten Wolde P.R.: Spatio-temporal Correlations Can Drastically Change the Response of a MAPK Pathway. Proc. of the National Academy of Sciences Volume 107, Issue 6 2010. 2
[31]
<label>{TWSM*11}</label> Torsney-Weir T., Saad A., Möller T., Hege H.-C., Weber B., Verbavatz J.-M.: Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration. IEEE Trans. on Visualization and Computer Graphics Volume 17, Issue 10 2011. 2
[32]
<label>{vLBSF14}</label> von Landesberger T., Bremm S., Schreck T., Fellner D.W.: Feature-Based Automatic Identification of Interesting Data Segments in Group Movement Data. Information Visualization Volume 13, Issue 3 2014. 1, 2, 3
[33]
<label>{VP04}</label> Verma V., Pang A.: Comparative Flow Visualization. IEEE Trans. on Visualization and Computer Graphics Volume 10, Issue 6 2004. 3
[34]
<label>{vPGL*14}</label> van Pelt R., Gasteiger R., Lawonn K., Meuschke M., Preim B.: Comparative blood flow visualization for cerebral aneurysm treatment assessment. Computer Graphics Forum Volume 33, Issue 3 2014. 3
[35]
<label>{WSD11}</label> Wood J., Slingsby A., Dykes J.: Visualizing the Dynamics of London's Bicycle-Hire Scheme. Cartographica Volume 46, Issue 4 2011. 2
[36]
<label>{WvdWvW09}</label> Willems N., van de Wetering H., van Wijk J.J.: Visualization of Vessel Movements. Computer Graphics Forum Volume 28, Issue 3 2009. 2

Cited By

View all
  • (2024)Data Type Agnostic Visual Sensitivity AnalysisIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332720330:1(1106-1116)Online publication date: 1-Jan-2024
  • (2021)SpatialRugsComputers and Graphics10.1016/j.cag.2021.08.003101:C(23-34)Online publication date: 1-Dec-2021
  • (2017)WatergateProceedings of the Eurographics Workshop on Visual Computing for Biology and Medicine10.2312/vcbm.20171235(33-42)Online publication date: 7-Sep-2017

Index Terms

  1. Feature-Driven Visual Analytics of Chaotic Parameter-Dependent Movement

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Computer Graphics Forum
    Computer Graphics Forum  Volume 34, Issue 3
    June 2015
    510 pages
    ISSN:0167-7055
    EISSN:1467-8659
    Issue’s Table of Contents

    Publisher

    The Eurographs Association & John Wiley & Sons, Ltd.

    Chichester, United Kingdom

    Publication History

    Published: 01 June 2015

    Author Tags

    1. Categories and Subject Descriptors according to ACM CCS
    2. Human-centered computing - Visualization - Visualization application domains - Visual analytics

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 22 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Data Type Agnostic Visual Sensitivity AnalysisIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332720330:1(1106-1116)Online publication date: 1-Jan-2024
    • (2021)SpatialRugsComputers and Graphics10.1016/j.cag.2021.08.003101:C(23-34)Online publication date: 1-Dec-2021
    • (2017)WatergateProceedings of the Eurographics Workshop on Visual Computing for Biology and Medicine10.2312/vcbm.20171235(33-42)Online publication date: 7-Sep-2017

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media