Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1111/cgf.12135guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Interactive ray casting of geodesic grids

Published: 17 June 2013 Publication History

Abstract

Geodesic grids are commonly used to model the surface of a sphere and are widely applied in numerical simulations of geoscience applications. These applications range from biodiversity, to climate change and to ocean circulation. Direct volume rendering of scalar fields defined on a geodesic grid facilitates scientists in visually understanding their large scale data. Previous solutions requiring to first transform the geodesic grid into another grid structure (e.g., hexahedral or tetrahedral grid) for using graphics hardware are not acceptable for large data, because such approaches incur significant computing and storage overhead. In this paper, we present a new method for efficient ray casting of geodesic girds by leveraging the power of Graphics Processing Units (GPUs). A geodesic grid can be directly fetched from storage or streamed from simulations to the rendering stage without the need of any intermediate grid transformation. We have designed and implemented a new analytic scheme to efficiently perform value interpolation for ray integration and gradient calculations for lighting. This scheme offers a more cost-effective rendering solution over the existing direct rendering approach. We demonstrate the effectiveness of our rendering solution using real-world geoscience data.

References

[1]
{AC07} Abrugia G., Carfora M. F.: Semi-Lagrangian advection on a spherical geodesic grid. International Journal for Numerical Methods in Fluids 55 (2007), 127--142. 1
[2]
{BCM*01} Bennett J., Cook R., Max N., May D., Williams P.: Parallelizing a High Accuracy Hardware-Assisted Volume Renderer for Meshes with Arbitrary Polyhedral. In Proceedings of PVG (2001), pp. 150--156. 3
[3]
{CBX12} Chen C., Bin J., Xiao F.: A Global Multimoment Constrained Finite-Volume Scheme for Advection Transport on the Hexagonal Geodesic Grid. Monthly Weather Review, 140 (2012), 941--955. 1
[4]
{CHM11} Correa C. D., Hero R., Ma K.-L.: A Comparison of Gradient Estimation Methods for Volume Rendering on Unstructured Meshes. IEEE Transactions on Visualization and Computer Graphics 17, 3 (2011), 305--319. 6
[5]
{FEVM10} Finkbeiner B., Entezari A., Ville D. V. D., Möller T.: Efficient Volume Rendering on the Body Centered Cubic Lattice Using Box Splines. Computers & Graphics 34, 4 (2010), 409--423. 3
[6]
{Gar90} Garrity M. P.: Raytracing Irregular Volume Data. In Proceedings of VVS (1990), pp. 35--40. 3
[7]
{HF06} Hormann K., Floater M.: Mean Value Coordinates for Arbitrary Planar Polygons. ACM Transactions on Graphics (TOG) 25, 4 (2006), 1424--1441. 8
[8]
{KE01} Kraus M., Ertl T.: Cell-Projection of Cyclic Meshes. In Proceedings of IEEE Visualization (2001), pp. 215--559. 3
[9]
{Lev10} Levy D.: Exascale Supercomputing Advances Climate Research. SciDAC Review, 16 (2010), 20--31. 1
[10]
{LWM04} Lum E. B., Wilson B., Ma K.-L.: High-Quality Lighting and Efficient Pre-Integration for Volume Rendering. In Proceedings of Joint EUROGRAPHICS-IEEE TCVG Symposium on Visualization (2004), pp. 25--34. 3
[11]
{MA04} Moreland K., Angel E.: A Fast High Accuracy Volume Renderer for Unstructured Data. In Proceedings of the IEEE Symposium on Volume Visualization and Graphics (2004), pp. 9--16. 3
[12]
{MdV09} Marchesin S., de Verdière G. C.: High-Quality, Semi-Analytical Volume Rendering for AMR Data. IEEE TVCG 15, 6 (2009), 1611--1618. 3, 6
[13]
{MHC90} Max N., Hanrahan P., Crawfis R.: Area and Volume Coherence for Efficient Visualization of 3D Scalar Functions. Computer Graphics 24, 5 (1990), 27--33. 3
[14]
{MHDG11} Muigg P., Hadwiger M., Doleisch H., Gröller E.: Interactive Volume Visualization of General Polyhedral Grids. IEEE TVCG 17, 12 (2011), 2115--2124. 3, 5, 8
[15]
{MHDH07} Muigg P., Hadwiger M., Doleisch H., Hauser H.: Scalable Hybrid Unstructured and Structured Grid Raycasting. IEEE TVCG 13, 6 (2007), 1592--1599. 3, 8
[16]
{MLP*02} Majewski D., Liermann D., Prohl P., Ritter B., Buchhold M., Hanisch T., Paul G., Wergen W.: The Operational Global Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests. Monthly Weather Review, 130 (2002), 319--338. 1
[17]
{MRB*08} Maximo A., Ribeiro S., Bentes C., Oliveira A., Farias R.: Memory Efficient GPU-Based Ray Casting for Unstructured Volume Rendering. In Proceedings of Volume Graphics (2008), pp. 155--162. 3
[18]
{MUS07} Mittal R., Upadhyaya H., Sharma O.: On Near-Diffusion-Free Advection over Spherical Geodesic Grids. Monthly Weather Review 135, 12 (2007), 4214--4225. 1
[19]
{PKS*11} Palmera B., Koontza A., Schuchardta K., Heikesb R., Randallb D.: Efficient Data IO for a Parallel Global Cloud Resolving Model. Environmental Modelling & Software 26, 12 (2011), 1725--1735. 4
[20]
{RE02} Röttger S., Ertl T.: A Two-Step Approach for Interactive Pre-Integrated Volume Rendering of Unstructured Grids. In Proceedings of the IEEE Symposium on Volume Visualization and Graphics (2002), pp. 23--28. 3
[21]
{RKE00} Röttger S., Kraus M., Ertl T.: Hardware-Accelerated Volume and Isosurface Rendering Based On Cell Projection. In Proceedings of IEEE Visualization (2000), pp. 109--116. 3
[22]
{RRH*02} Randall D. A., Ringler T. D., Heikes R. P., Jones P., Baumgardner J.: Climate Modeling with Spherical Geodesic Grids. Computing in Science & Engineering 4, 5 (2002), 32--41. 1, 4
[23]
{SAM68} Sadourny R., Arakawa A., Mlntz Y.: Integration of the Nondivergent Barotropic Vorticity Equation with an Icosahedral-Hexagonal Grid for the Sphere. Monthly Weather Review, 96 (1968), 351--356. 1
[24]
{SBM94} Stein C. M., Becker B. G., Max N.: Sorting and Hardware Assisted Rendering for Volume Visualization. In Proceedings of VolVis (1994), pp. 83--89. 3
[25]
{SDM10} Shalf J., Dosanjh S., Morrison J.: Exascale Computing Technology Challenges. In Proceedings of VecPar (2010), pp. 1--25. 2
[26]
{ST90} Shirley P., Tuchman A.: A Polygonal Approximation to Direct Scalar Volume Rendering. In Proceedings of VVS (1990), pp. 63--70. 2
[27]
{Wil68} Williamson D. L.: Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus, 20 (1968), 642--653. 1
[28]
{Wil92} Williams P. L.: Visibility Ordering Meshed Polyhedra. ACM Transactions on Graphics 11, 2 (1992), 103--126. 3
[29]
{WKME03a} Weiler M., Kraus M., Merz M., Ertl T.: Hardware-Based Ray Casting for Tetrahedral Meshes. In Proceedings of IEEE Visualization (2003), pp. 333--340. 3, 4, 8
[30]
{WKME03b} Weiler M., Kraus M., Merz M., Ertl T.: Hardware-Based View-Independent Cell Projection. IEEE TVCG 9, 2 (2003), 163--175. 3
[31]
{WMKE04} Weiler M., Mallón P. N., Kraus M., Ertl T.: Texture-Encoded Tetrahedral Strips. In Proceedings of VolVis (2004), pp. 71--78. 3
[32]
{WWF09} Weller H., Weller H. G., Fournier A.: Voronoi, Delaunay, and Block-Structured Mesh Refinement for Solution of the Shallow-Water Equations on the Sphere. Monthly Weather Review, 137 (2009), 4208--4224. 1

Cited By

View all
  • (2017)A framework for interactive visual analysis of heterogeneous marine data in an integrated problem solving environmentComputers & Geosciences10.1016/j.cageo.2017.03.021104:C(20-28)Online publication date: 1-Jul-2017

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
EuroVis '13: Proceedings of the 15th Eurographics Conference on Visualization
June 2013
508 pages

Sponsors

  • KAUST: King Abdullah University of Science and Technology
  • UFZ: Helmholtz Centre for Environmental Research
  • NVIDIA
  • IRTG: DFG's International Research Training Group 1131
  • Otto-von-Guericke University, Magdeburg, Germany: Otto-von-Guericke University, Magdeburg, Germany
  • Uinv. Leipzig: Universität Leipzig
  • DFG: German Research Council
  • IBM: IBM

Publisher

The Eurographs Association & John Wiley & Sons, Ltd.

Chichester, United Kingdom

Publication History

Published: 17 June 2013

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2017)A framework for interactive visual analysis of heterogeneous marine data in an integrated problem solving environmentComputers & Geosciences10.1016/j.cageo.2017.03.021104:C(20-28)Online publication date: 1-Jul-2017

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media