Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A Multi-Level Task Framework for Event Sequence Analysis

Published: 18 September 2024 Publication History

Abstract

Despite the development of numerous visual analytics tools for event sequence data across various domains, including but not limited to healthcare, digital marketing, and user behavior analysis, comparing these domain-specific investigations and transferring the results to new datasets and problem areas remain challenging. Task abstractions can help us go beyond domain-specific details, but existing visualization task abstractions are insufficient for event sequence visual analytics because they primarily focus on multivariate datasets and often overlook automated analytical techniques. To address this gap, we propose a domain-agnostic multi-level task framework for event sequence analytics, derived from an analysis of 58 papers that present event sequence visualization systems. Our framework consists of four levels: objective, intent, strategy, and technique. Overall objectives identify the main goals of analysis. Intents comprises five high-level approaches adopted at each analysis step: augment data, simplify data, configure data, configure visualization, and manage provenance. Each intent is accomplished through a number of strategies, for instance, data simplification can be achieved through aggregation, summarization, or segmentation. Finally, each strategy can be implemented by a set of techniques depending on the input and output components. We further show that each technique can be expressed through a quartet of action-input-output-criteria. We demonstrate the framework's descriptive power through case studies and discuss its similarities and differences with previous event sequence task taxonomies.

References

[1]
J.-W. Ahn, C. Plaisant, and B. Shneiderman. A task taxonomy for network evolution analysis. IEEE Transactions on Visualization and Computer Graphics, 20(3): pp. 365–376, 2014. 2.
[2]
R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic activity in information visualization. In IEEE Symposium on Information Visualization, 2005. INFOVIS 2005., pp. 111–117, 2005. 1.
[3]
N. Andrienko and G. Andrienko. Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Berlin: Springer-Verlag, 2005. 1.
[4]
A. Apostolico and R. Giancarlo. Sequence alignment in molecular biology. Journal of Computational Biology, 5(2): pp. 173–196, 1998. 9672827. 9.
[5]
S. Bartolomeo, Y. Zhang, F. Sheng, and C. Dunne. Sequence braiding: Visual overviews of temporal event sequences and attributes. IEEE Transactions on Visualization and Computer Graphics, 27(02): pp. 1353–1363, 2021. 1, 5, 6, 7.
[6]
J. Bernard, T. Ruppert, M. Scherer, T. Schreck, and J. Kohlhammer. Guided discovery of interesting relationships between time series clusters and metadata properties. In Proceedings of the 12th International Conference on Knowledge Management and Knowledge Technologies. ACM, New York, 2012. 2.
[7]
M. Brehmer and T. Munzner. A multi-level typology of abstract visualization tasks. IEEE Transactions on Visualization and Computer Graphics, 19(12): pp. 2376–2385, 2013. 1, 2, 9.
[8]
B. C. Cappers, P. N. Meessen, S. Etalle, and J. J. van Wijk. Eventpad: Rapid malware analysis and reverse engineering using visual analytics. In 2018 IEEE Symposium on visualization for Cyber Security (VizSec), pp. 1–8, 2018. 5, 6, 7.
[9]
B. C. Cappers and J. J. van Wijk. Exploring multivariate event sequences using rules, aggregations, and selections. IEEE Transactions on Visualization and Computer Graphics, 24(1): pp. 532–541, 2018. 1, 7.
[10]
Y. Chen, P. Xu, and L. Ren. Sequence synopsis: Optimize visual summary of temporal event data. IEEE Transactions on Visualization and Computer Graphics, 24(01): pp. 45–55, 2018. 2, 3, 5, 7.
[11]
K. Dextras-Romagnino and T. Munzner. Segmentifier: Interactive refinement of clickstream data. Computer Graphics Forum, 38(3): pp. 623–634, 2019. 1, 5, 6, 7.
[12]
F. Du, C. Plaisant, N. Spring, K. Crowley, and B. Shneiderman. Even-taction: A visual analytics approach to explainable recommendation for event sequences. ACM Transactions on Interactive Intelligent Systems, 9(4): pp. 1–31, 2019. 2.
[13]
F. Du, C. Plaisant, N. Spring, and B. Shneiderman. Eventaction: Visual analytics for temporal event sequence recommendation. In 2016 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 61–70, 2016. 2.
[14]
F. Du, B. Shneiderman, C. Plaisant, S. Malik, and A. Perer. Coping with volume and variety in temporal event sequences: Strategies for sharpening analytic focus. IEEE Transactions on Visualization and Computer Graphics, 23(06): pp. 1636–1649, 2017. 1, 2, 7, 8.
[15]
F. Emmert-Streib, S. Moutari, and M. Dehmer. The process of analyzing data is the emergent feature of data science. Frontiers in Genetics, 7, 2016. 3.
[16]
D. Gotz, N. Cao, E. Goldbraich, and B. Carmeli. Gapflow: Visualizing gaps in care for medical treatment plans. [Online]. Available: https://gotz.web.unc.edu/research-projeet/gapflow/, 2013. 5, 7.
[17]
D. Gotz and H. Stavropoulos. Decisionflow: Visual analytics for high-dimensional temporal event sequence data. IEEE Transactions on Visualization and Computer Graphics, 20(12): pp. 1783–1792, 2014. 1, 6, 7.
[18]
D. Gotz and K. Wongsuphasawat. Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization. IEEE Transactions on Visualization and Computer Graphics, 18(12): pp. 2659–2668, 2012. 1.
[19]
D. Gotz, J. Zhang, W. Wang, J. Shrestha, and D. Borland. Visual analysis of high-dimensional event sequence data via dynamic hierarchical aggregation. IEEE Transactions on Visualization and Computer Graphics, 26(01): pp. 440–450, 2020. 1, 5, 6, 7.
[20]
D. Gotz and M. X. Zhou. Characterizing users' visual analytic activity for insight provenance. Information Visualization, 8(1): pp. 42–55, 2009. 2.
[21]
S. Guo, F. Du, S. Malik, E. Koh, S. Kim, Z. Liu, D. Kim, H. Zha, and N. Cao. Visualizing uncertainty and alternatives in event sequence predictions. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI'19, p. 1–12. ACM, New York, 2019. 3.
[22]
S. Guo, Z. Jin, Q. Chen, D. Gotz, H. Zha, and N. Cao. Visual anomaly detection in event sequence data. In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. 3.
[23]
S. Guo, Z. Jin, D. Gotz, F. Du, H. Zha, and N. Cao. Visual progression analysis of event sequence data. IEEE Transactions on Visualization and Computer Graphics, 25: pp. 417–426, 2018. 5, 6.
[24]
S. Guo, K. Xu, R. Zhao, D. Gotz, H. Zha, and N. Cao. Eventthread: Visual summarization and stage analysis of event sequence data. IEEE Transactions on Visualization and Computer Graphics, 24(1): pp. 56–65, 2018. 5, 6.
[25]
Y. Guo, S. Guo, Z. Jin, S. Kaul, D. Gotz, and N. Cao. Survey on visual analysis of event sequence data. IEEE Transactions on Visualization and Computer Graphics, 28(12): pp. 5091–5112, 2022. 2.
[26]
Y. Han, A. Rozga, N. Dimitrova, G. D. Abowd, and J. Stasko. Visual analysis of proximal temporal relationships of social and communicative behaviors. Computer Graphics Forum, 34(3): pp. 51–60, 2015. 1, 5, 7.
[27]
J. Heer and B. Shneiderman. Interactive dynamics for visual analysis: A taxonomy of tools that support the fluent and flexible use of visualizations. Queue, 10(2): pp. 30–55, 2012. 2.
[28]
M. Hu, K. Wongsuphasawat, and J. Stasko. Visualizing social media content with sententree. IEEE transactions on visualization and computer graphics, 23(1): pp. 621–630, 2016. 6, 7.
[29]
W. Jentner and D. A. Keim. Visualization and visual analytic techniques for patterns. Springer, 2019. 7.
[30]
Z. Jin, S. Guo, N. Chen, D. Weiskopf, D. Gotz, and N. Cao. Visual causality analysis of event sequence data. IEEE Transactions on Visualization and Computer Graphics, 27(2): pp. 1343–1352, 2021. 3, 7, 8.
[31]
J. Jo, J. Huh, J. Park, B. Kim, and J. Seo. Livegantt: Interactively visualizing a large manufacturing schedule. IEEE Transactions on Visualization and Computer Graphics, 20(12): pp. 2329–2338, 2014. 3.
[32]
H. J. Kim, S. E. Hong, and K. J. Cha. seq2vec: Analyzing sequential data using multi-rank embedding vectors. Electronic Commerce Research and Applications, 43: p. 101003, 2020. 1.
[33]
J. Krause, A. Perer, and H. Stavropoulos. Supporting iterative cohort construction with visual temporal queries. IEEE Transactions on Visualization and Computer Graphics, 22(01): pp. 91–100, 2016. 3.
[34]
B. Kwon, M. Choi, J. Kim, E. Choi, Y. Kim, S. Kwon, J. Sun, and J. Choo. Retainvis: Visual analytics with interpretable and interactive recurrent neural networks on electronic medical records. IEEE Transactions on Visualization and Computer Graphics, 25(01): pp. 299–309, 2019. 3.
[35]
B. C. Kwon, V. Anand, K. A. Severson, S. Ghosh, Z. Sun, B. I. Frohnert, M. Lundgren, and K. Ng. Dpvis: Visual analytics with hidden markov models for disease progression pathways. IEEE Transactions on Visualization and Computer Graphics, 27(9): pp. 3685–3700, 2021. 3, 6, 7.
[36]
H. Lam, D. Russell, D. Tang, and T. Munzner. Session viewer: Visual exploratory analysis of web session logs. In 2007 IEEE Symposium on Visual Analytics Science and Technology, pp. 147–154, 2007. 1, 5, 6, 7.
[37]
H. Lam, M. Tory, and T. Munzner. Bridging from goals to tasks with design study analysis reports. IEEE Transactions on Visualization and Computer Graphics, 24(1): pp. 435–445, 2018. 2.
[38]
P.-M. Law, Z. Liu, S. Malik, and R. C. Basole. Maqui: Interweaving queries and pattern mining for recursive event sequence exploration. IEEE Transactions on Visualization and Computer Graphics, 25(1): pp. 396–406, 2019. 6.
[39]
F. Lekschas, B. Peterson, D. Haehn, E. Ma, N. Gehlenborg, and H. Pfister. Peax: Interactive visual pattern search in sequential data using unsupervised deep representation learning. Computer Graphics Forum, 39(3): pp. 167–179, 2020. 2.
[40]
H. Li and N. Homer. A survey of sequence alignment algorithms for next-generation sequencing. Briefings in Bioinformatics, 11(5): pp. 473–483, 2010. 9.
[41]
S. V. D. Linden, B. M. Wulterkens, M. M. V. Gilst, S. Overeem, C. V. Pul, A. Vilanova, and S. V. D. Elzen. FlexEvent: going beyond Case-Centric Exploration and Analysis of Multivariate Event Sequences. Computer Graphics Forum, 2023. 7, 8.
[42]
Z. Liu, B. Kerr, M. Dontcheva, J. Grover, M. Hoffman, and A. Wilson. Coreflow: Extracting and visualizing branching patterns from event sequences. Computer Graphics Forum, 36(3): pp. 527–538, 2017. 1, 2, 5, 6, 7.
[43]
Z. Liu, Y. Wang, M. Dontcheva, M. Hoffman, S. Walker, and A. Wilson. Patterns and sequences: Interactive exploration of clickstreams to understand common visitor paths. IEEE Transactions on Visualization and Computer Graphics, 23(1): pp. 321–330, 2017. 1, 3, 5, 6, 7, 9.
[44]
J. Magallanes, T. Stone, P. D. Morris, S. Mason, S. Wood, and M.-C. Villa-Uriol. Sequen-c: A multilevel overview of temporal event sequences. IEEE Transactions on Visualization and Computer Graphics, 28(1): pp. 901–911, 2022. 8 3.
[45]
S. Malik, F. Du, M. Monroe, E. Onukwugha, C. Plaisant, and B. Shneiderman. Cohort comparison of event sequences with balanced integration of visual analytics and statistics. In Proceedings of the 20th International Conference on Intelligent User Interfaces, IUI'15, p. 38–49. ACM, New York, 2015. 3.
[46]
Y. Ming, P. Xu, F. Cheng, H. Qu, and L. Ren. Protosteer: Steering deep sequence model with prototypes. IEEE Transactions on Visualization and Computer Graphics, 26(1): pp. 238–248, 2020. 5, 6, 7.
[47]
M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman. Temporal event sequence simplification. IEEE Transactions on Visualization and Computer Graphics, 19(12): pp. 2227–2236, 2013. 1, 5, 6, 7, 9.
[48]
M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder, E. Mayo-Wilson, S. McDonald, L. A. McGuinness, L. A. Stewart, J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting, and D. Moher. The prisma 2020 statement: an updated guideline for reporting systematic reviews. BMJ, p. 372, 2021. 9.
[49]
Y. Peiris, C. Barth, E. M. Huang, and J. Bernard. A data-centric methodology and task typology for time-stamped event sequences. In 2022 IEEE Evaluation and Beyond - Methodological Approaches for Visualization (BELIV), pp. 66–76. IEEE Computer Society, Los Alamitos, 2022. 1, 2, 7, 8.
[50]
A. Perer and D. Gotz. Data-driven exploration of care plans for patients. In CHI' 13 Extended Abstracts on Human Factors in Computing Systems, CHI EA '13, p. 439–444. ACM, New York, 2013. 1.
[51]
A. Perer and F. Wang. Frequence: interactive mining and visualization of temporal frequent event sequences. In Proceedings of the 19th International Conference on Intelligent User Interfaces, IUI'14, p. 153–162. ACM, New York, 2014. 1.
[52]
C. Plaisant. The challenge of information visualization evaluation. In Proceedings of the Working Conference on Advanced Visual Interfaces, AVI '04, p. 109–116. ACM, New York, 2004. 1, 9.
[53]
C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman. Lifelines: visualizing personal histories. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '96, p. 221–227. ACM, New York, 1996. 3, 6, 7.
[54]
C. Plaisant and B. Shneiderman. The diversity of data and tasks in event analytics. [Online]. Available: https://eventevent.github.io/papers/EVENT_2016_paper_13.pdf, 2016. 1, 2, 7, 8.
[55]
J. Qi, V. Bloemen, S. Wang, J. van Wijk, and H. van de Wetering. Stbins: Visual tracking and comparison of multiple data sequences using temporal binning. IEEE Transactions on Visualization and Computer Graphics, 26(1): pp. 1054–1063, 2020. 1, 6, 7.
[56]
A. Rind, W. Aigner, M. Wagner, S. Miksch, and T. Lammarsch. Task cube A three-dimensional conceptual space of user tasks in visualization design and evaluation. Information Visualization, 15(4): pp. 288–300, 2016. 1, 2.
[57]
H.-J. Schulz, T. Nocke, M. Heitzler, and H. Schumann. A design space of visualization tasks. IEEE Transactions on Visualization and Computer Graphics, 19(12): pp. 2366–2375, 2013. 1.
[58]
M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology: Reflections from the trenches and the stacks. IEEE Transactions on Visualization and Computer Graphics, 18(12): pp. 2431–2440, 2012. 9.
[59]
B. Shneiderman. The eyes have it: a task by data type taxonomy for information visualizations. In Proceedings 1996 IEEE Symposium on Visual Languages, pp. 336–343, 1996. 1.
[60]
B. Shneiderman. The event quartet: How visual analytics works for temporal data. [Online]. Available: https://eventevent.github.io/papers/EVENT_2016_paper_7.pdf, 2016. 2.
[61]
E. R. A. Valiati, M. S. Pimenta, and C. M. D.S. Freitas. A taxonomy of tasks for guiding the evaluation of multidimensional visualizations. In Proceedings of the 2006 AVI Workshop on BEyond Time and Errors: Novel Evaluation Methods for Information Visualization, BELIV '06, p. 1–6. ACM, New York, 2006. 1.
[62]
K. Vrotsou, J. Johansson, and M. Cooper. Activitree: Interactive visual exploration of sequences in event-based data using graph similarity. IEEE Transactions on Visualization and Computer Graphics, 15(6): pp. 945–952, 2009. 1, 7.
[63]
K. Vrotsou and A. Nordman. Exploratory visual sequence mining based on pattern-growth. IEEE Transactions on Visualization and Computer Graphics, 25(8): pp. 2597–2610, 2019. 1, 5, 6, 7.
[64]
T. D. Wang, C. Plaisant, A. J. Quinn, R. Stanchak, S. Murphy, and B. Shneiderman. Aligning temporal data by sentinel events: discovering patterns in electronic health records. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '08, p. 457–466. ACM, New York, 2008. 1, 2, 7.
[65]
T. D. Wang, C. Plaisant, B. Shneiderman, N. Spring, D. Roseman, G. Marchand, V. Mukherjee, and M. Smith. Temporal summaries: Supporting temporal categorical searching, aggregation and comparison. IEEE Transactions on Visualization and Computer Graphics, 15(6): pp. 1049–1056, 2009. 1, 2.
[66]
K. Wongsuphasawat and D. Gotz. Outflow: Visualizing patient flow by symptoms and outcome. [Online]. Available: https://gotz.web.unc.edu/wp-content/uploads/sites/5664/2013/10/wongsuphasawat_ieee_visweek_vahc_2011.pdf, 2011. 1,6.
[67]
K. Wongsuphasawat, J. A. Guerra Gómez, C. Plaisant, T. D. Wang, M. Taieb-Maimon, and B. Shneiderman. Lifeflow: visualizing an overview of event sequences. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '11, p. 1747–1756. ACM, New York, 2011. 1, 3, 7.
[68]
J. Wu, D. Liu, Z. Guo, and Y. Wu. Rasipam: Interactive pattern mining of multivariate event sequences in racket sports. IEEE Transactions on Visualization and Computer Graphics, 29(1): pp. 940–950, 2023. 3, 7, 8.
[69]
Y. Wu, S. Liu, K. Yan, M. Liu, and F. Wu. Opinionflow: Visual analysis of opinion diffusion on social media. IEEE Transactions on Visualization and Computer Graphics, 20(12): pp. 1763–1772, 2014. 3, 5, 6.
[70]
J. S. Yi, Y. A. Kang, J. Stasko, and J. Jacko. Toward a deeper understanding of the role of interaction in information visualization. IEEE Transactions on Visualization and Computer Graphics, 13(6): pp. 1224–1231, 2007. 1, 2, 3.
[71]
E. Zgraggen, S. M. Drucker, D. Fisher, and R. DeLine. (slqu)eries: Visual regular expressions for querying and exploring event sequences. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI'15, p. 2683–2692. ACM, New York, 2015. 7.
[72]
J. Zhao, Z. Liu, M. Dontcheva, A. Hertzmann, and A. Wilson. Matrixwave: Visual comparison of event sequence data. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI '15, p. 259–268. ACM, New York, 2015. 1, 3, 5, 7.
[73]
K. T. Zinat, J. Yang, A. Gandhi, N. Mitra, and Z. Liu. A comparative evaluation of visual summarization techniques for event sequences. Computer Graphics Forum, 42(3): pp. 173–185, 2023. 7, 9.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics  Volume 31, Issue 1
Jan. 2025
1276 pages

Publisher

IEEE Educational Activities Department

United States

Publication History

Published: 18 September 2024

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media