Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A Psychophysical Investigation of Size as a Physical Variable

Published: 31 January 2016 Publication History

Abstract

Physical visualizations, or data physicalizations, encode data in attributes of physical shapes. Despite a considerable body of work on visual variables, “physical variables” remain poorly understood. One of them is physical size. A difficulty for solid elements is that “size” is ambiguous - it can refer to either length/diameter, surface, or volume. Thus, it is unclear for designers of physicalizations how to effectively encode quantities in physical size. To investigate, we ran an experiment where participants estimated ratios between quantities represented by solid bars and spheres. Our results suggest that solid bars are compared based on their length, consistent with previous findings for 2D and 3D bars on flat media. But for spheres, participants' estimates are rather proportional to their surface. Depending on the estimation method used, judgments are rather consistent across participants, thus the use of perceptually-optimized size scales seems possible. We conclude by discussing implications for the design of data physicalizations and the need for more empirical studies on physical variables.

References

[1]
J. C. Baird. Psychophysical Analysis of Visual Space. International Series of Monographs in Experimental Psychology. Elsevier, 1970.
[2]
A. Bartholomew, J. F. Norman, J. Swindle, A. Boswell, and H. Norman. Aging and the use of implicit standards in the visual perception of length. Journal of Vision, 10(7):485–485, 2 Aug. 2010.
[3]
J. Bertin. Semiology of graphics: diagrams, networks, maps. 1983.
[4]
A. Bezerianos and P. Isenberg. Perception of visual variables on tiled wall-sized displays for information visualization applications. TVCG, 18(12):2516–2525, 2012.
[5]
M. A. Borkin, A. A. Vo, Z. Bylinskii, P. Isola, S. Sunkavalli, A. Oliva, and H. Pfister. What makes a visualization memorable? IEEE Trans. Vis. Comput. Graph., 19(12):2306–2315, Dec. 2013.
[6]
N. Boukhelifa, A. Bezerianos, T. Isenberg, and J.-D. Fekete. Evaluating sketchiness as a visual variable for the depiction of qualitative uncertainty. TVCG, 18(12):2769–2778, 2012.
[7]
J. I. Clarke. Statistical Map-Reading. Geography, 44(2):96–104, 1 Apr. 1959.
[8]
W. S. Cleveland. Graphs in scientific publications. Am. Stat., 38(4)261–269, 1 Nov. 1984.
[9]
W. S. Cleveland, C. S. Harris, and R. McGill. Judgments of circle sizes on statistical maps. J. Am. Stat. Assoc., 77(379):541–547, 1 Sept. 1982.
[10]
W. S. Cleveland and R. McGill. Graphical perception: Theory, experimentation, and application to the development of graphical methods. J. Am. Stat. Assoc., 1984.
[11]
W. S. Cleveland and R. McGill. An experiment in graphical perception. Int. J. Man. Mach. Stud., 25(5):491–500, Nov. 1986.
[12]
W. S. Cleveland and R. McGill. Graphical perception: The visual decoding of quantitative information on graphical displays of data. J. R. Stat. Soc. Ser. A, 150(3):192–229, 1 Jan. 1987.
[13]
A. L. Comrey. A proposed method for absolute ratio scaling. Psychometrika, 15(3):317–325, Sept. 1950.
[14]
F. E. Croxton and H. Stein. Graphic comparisons by bars, squares, circles, and cubes. J. Am. Stat. Assoc., 27(177):54–60, 1932.
[15]
P. Dragicevic and Y. Jansen. List of physical visualizations. [Online]. Available: data-phys.org/list, 2012.
[16]
G. Ekman and K. Junge. Psychophysical relations in visual perception of length, area and volume. Scand. J. Psycho., 2(1):1–10, 1 Mar. 1961.
[17]
G. Ekman, R. Lindman, and W. Willlam-Olsson. A Psychological Study of Cartographic Symbols. Percept. Mot. Skills, 13(3):355–368, 1961.
[18]
J. J. Flannery. The graduated circle: A description, analysis, and evaluation of a quantitative map symbol. University of Wisconsin-Madison, 1956.
[19]
J. J. Flannery. The relative effectiveness of some common graduated point symbols in the presentation of quantitative data. Cartographica: The International Journal for Geographic Information and Geovisualization, 8(2):96–109, 1971.
[20]
R. W. Fleming, A. Torralba, and E. H. Adelson. Specular reflections and the perception of shape. J. Vis., 4(9):798–820, 23 Sept. 2004.
[21]
S. Follmer, D. Leithinger, A. Olwal, A. Hogge, and H. Ishii. inform: Dynamic physical affordances and constraints through shape and object actuation. In Proc. UIST'13, pages 417–426. ACM.
[22]
D. M. Green and R. Duncan Luce. Variability of magnitude estimates: A timing theory analysis. Percept. Psychophys., 15(2):291–300, 1974.
[23]
R. N. Haber and C. A. Levin. The independence of size perception and distance perception. Percept. Psychophys., 63(7):1140–1152, Oct. 2001.
[24]
T. Hogan and E. Hornecker. How does representation modality affect User-Experience of data artifacts? In Haptic and Audio Interaction Design, Lecture Notes in Computer Science, pages 141–151. Springer Berlin Heidelberg, 1 Jan. 2012.
[25]
J. G. Hollands and I. Spence. Judgments of change and proportion in graphical perception. Hum. Factors, 34(3):313–334, June 1992.
[26]
Y. Jansen and P. Dragicevic. An interaction model for visualizations beyond the desktop. TVCG, 19(12):2396–2405,2013.
[27]
Y. Jansen, P. Dragicevic, and J.-D. Fekete. Evaluating the efficiency of physical visualizations. In Proc. CHI'I3, pages 2593–2602. ACM.
[28]
Y. Jansen, P. Dragicevic, P. Isenberg, J. Alexander, A. Karnik, J. Kildal, S. Subramanian, and K. Hornbaek. Opportunities and challenges in data physicalization. In Proc. of CHI’ 15, 2015.
[29]
M. Kahrimanovic, W. M. Bergmann Tiest, and A. M. L. Kappers. Seeing and feeling volumes: The influence of shape on volume perception. Acta Psychol., 134(3):385–390, July 2010.
[30]
M. Kahrimanovic, W. M. B. Tiest, and A. M. L. Kappers. Haptic perception of volume and surface area of 3-D objects. Atten. Percept. Psychophys., 72(2):517–527, Feb. 2010.
[31]
R. A. Khot, L. Hjorth, and F. F. Mueller. Understanding physical activity through 3D printed material artifacts. In Proc. CHI'I4, pages 3835–3844. ACM.
[32]
I. M. Lipkus, G. Samsa, and B. K. Rimer. General performance on a numeracy scale among highly educated samples. Med. Decis. Making, 21(1):37–44, Jan. 2001.
[33]
M. Macdonald-Ross. How numbers are shown. AVCR, 25(4):359–409, 1 Dec. 1977.
[34]
J. Mackinlay. Automating the design of graphical presentations of relational information. ACM Trans. Graph., 5(2):110–141, Apr. 1986.
[35]
G. Martius. Über die scheinbare Größe der Gegenstände und ihre Beziehung zur Größe der Netzhautbilder. Philos. Stud., 5: 601–617, 1889.
[36]
D. McCready. On size, distance, and visual angle perception. Percept. Psychophys., 37(4):323–334, Apr. 1985.
[37]
T. Moher. Embedded phenomena: supporting science learning with classroom-sized distributed simulations. In Proc. CHI'06, pages 691–700. ACM.
[38]
B. Nissen and J. Bowers. Data-things: Digital fabrication situated within participatory data translation activities. In Proc. CHI'I5, pages 2467–2476. ACM.
[39]
J. F. Norman, J. T. Todd, V. J. Perotti, and J. S. Tittle. The visual perception of three-dimensional length. J. Exp. Psychol. Hum. Percept. Perform., 22(1):173–186, Feb. 1996.
[40]
A. J. Parkes. Phrases of the kinetic: dynamic physicality as a dimension of the design process. PhD thesis, Massachusetts Institute of Technology, 2009.
[41]
L. V. Peterson and W. Schramm. How accurately are different kinds of graphs read? Audiovisual communication review, 2(3):178–189, 1954.
[42]
F. Phillips and E. J. L. Egan. Crossmodal information for visual and haptic discrimination. In IS&T/SPIE Electronic Imaging, pages 72400H–72400H-15. International Society for Optics and Photonics, 5 Feb. 2009.
[43]
J. Plateau. Sur la mesure des sensations physiques, et sur la loi qui lie lintensité de ces sensations à lintensité de la cause excitante. Bulletins de l ‘Académic Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 23: 376–388, 1872.
[44]
E. C. Poulton. Bias in quantifying judgements. Taylor & Francis, 1989.
[45]
Z. Pousman, J. T. Stasko, and M. Mateas. Casual information visualization: Depictions of data in everyday life. IEEE TVCG, 13(6):1145–1152, 2007.
[46]
M. K. Rasmussen, E. W. Pedersen, M. G. Petersen, and K. Hornbæk. Shape-changing interfaces: A review of the design space and open research questions. In Proc. CHI’ 12, pages 735–744.
[47]
B. E. Rogowitz, L. A. Treinish, S. Bryson, and Others. How not to lie with visualization. Computers in Physics, 10(3):268–273, 1996.
[48]
B. Schneider and R. Bissett. “ratio” and “difference” judgments for length, area, and volume: are there two classes of sensory continua? J. Exp. Psychol. Hum. Percept. Perform., 14(3):503–512, Aug. 1988.
[49]
O. Shaer and E. Hornecker. Tangible user interfaces: Past, present, and future directions. Found. Trends Hum.-Comput. Interact., 3(1–2):1–137, 2010.
[50]
I. Spence. Visual psychophysics of simple graphical elements. J. Exp. Psychol. Hum. Percept. Perform., 16(4):683–692, Nov. 1990.
[51]
R. J. Stanek. A parametric study of volume and surface judgments. Percept. Psychophys., 6(1):16–18, 1969.
[52]
S. S. Stevens. On the psychophysical law. Psychol. Rev., 64(3):153–181, May 1957.
[53]
S. S. Stevens. Issues in psychophysical measurement. Psychol. Rev., 78(5)426, Sept. 1971.
[54]
S. Stusak, J. Schwarz, and A. Butz. Evaluating the memorability of physical visualizations. In Proc. CHI'15, pages 3247–3250. ACM, to appear, 2015.
[55]
S. Stusak, A. Tabard, F. Sauka, R. A. the, and A. Butz. Activity sculptures: Exploring the impact of physical visualizations on running activity. IEEE Trans. IVis. Comput. Graph., 20(12):2201–2210, Dec. 2014.
[56]
S. Swaminathan, C. Shi, Y. Jansen, P. Dragicevic, L. A. Oehlberg, and J.-D. Fekete. Supporting the design and fabrication of physical visualizations. In Proc. CHI'I4, pages 3845–3854. ACM.
[57]
F. Taher, J. Hardy, A. Karnik, C. Weichel, Y. Jansen, K. Hornbaek, and J. Alexander. Exploring interactions with physically dynamic bar charts. In Proc. CHI'I5, pages 3237–3246. ACM, 2015.
[58]
J. Talbot, V. Setlur, and A. Anand. Four experiments on the perception of bar charts. IEEE TVCG, 20(12):2152–2160, Dec. 2014.
[59]
A. S. Taylor, S. E. Lindley, T. Regan, D. Sweeney, V. Vlachokyriakos, L. Grainger, and J. Lingel. Data-in-place: Thinking through the relations between data and community. In Proc. CHI'I5, pages 2863–2872. ACM.
[60]
M. Teghtsoonian. The judgment of size. Am. J. Psychol., 78: 392–402, Sept. 1965.
[61]
R. Teghtsoonian and M. Teghtsoonian. The effects of size and distance on magnitude estimations of apparent size. Am. J. Psychol., 83(4):601–612, Dec. 1970.
[62]
A. Vande Moere. Beyond the tyranny of the pixel: Exploring the physicality of information visualization. In IV'08, 2008.
[63]
A. Vande Moere and S. Patel. Analyzing the design approaches of physical data sculptures in a design education context. In Visual Information Communications International (VINCI‘09), 2009.
[64]
J. Vandekerckhove, D. Matzke, and E.-J. Wagenmakers. Model comparison and the principle of parsimony. Oxford Handbook of Computational and Mathematical Psychology. Oxford: Oxford University Press, 2014.
[65]
J. Zacks, E. Levy, B. Tversky, and D. J. Schiano. Reading bar graphs: Effects of extraneous depth cues and graphical context. J. Exp. Psychol. Appl., 4(2)119, 1998.

Cited By

View all
  • (2024)Physicalization from Theory to Practice: Exploring Contemporary Challenges for Physicalization DesignCompanion Publication of the 2024 ACM Designing Interactive Systems Conference10.1145/3656156.3658381(368-371)Online publication date: 1-Jul-2024
  • (2023)A Design Vocabulary for Data PhysicalizationACM Transactions on Computer-Human Interaction10.1145/361736631:1(1-62)Online publication date: 29-Nov-2023
  • (2023)Thinking Spatially About Data: A Developing Framework to Understand Children's Spatial Reasoning in Data PhysicalizationProceedings of the 22nd Annual ACM Interaction Design and Children Conference10.1145/3585088.3593891(537-542)Online publication date: 19-Jun-2023
  • Show More Cited By

Index Terms

  1. A Psychophysical Investigation of Size as a Physical Variable
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      Publisher

      IEEE Educational Activities Department

      United States

      Publication History

      Published: 31 January 2016

      Author Tags

      1. physical variable
      2. Data physicalization
      3. physical visualization
      4. psychophysics
      5. experiment

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 01 Oct 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Physicalization from Theory to Practice: Exploring Contemporary Challenges for Physicalization DesignCompanion Publication of the 2024 ACM Designing Interactive Systems Conference10.1145/3656156.3658381(368-371)Online publication date: 1-Jul-2024
      • (2023)A Design Vocabulary for Data PhysicalizationACM Transactions on Computer-Human Interaction10.1145/361736631:1(1-62)Online publication date: 29-Nov-2023
      • (2023)Thinking Spatially About Data: A Developing Framework to Understand Children's Spatial Reasoning in Data PhysicalizationProceedings of the 22nd Annual ACM Interaction Design and Children Conference10.1145/3585088.3593891(537-542)Online publication date: 19-Jun-2023
      • (2022)Making Data Tangible: A Cross-disciplinary Design Space for Data PhysicalizationProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3501939(1-18)Online publication date: 29-Apr-2022
      • (2021)Comparing Understanding and Memorization in Physicalization and VR VisualizationProceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction10.1145/3430524.3442446(1-7)Online publication date: 14-Feb-2021
      • (2021)Scaling Data Physicalization – How Does Size Influence Experience?Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction10.1145/3430524.3440627(1-14)Online publication date: 14-Feb-2021
      • (2021)Reconfiguration Strategies with Composite Data PhysicalizationsProceedings of the 2021 CHI Conference on Human Factors in Computing Systems10.1145/3411764.3445746(1-18)Online publication date: 6-May-2021
      • (2021)Tilt Map: Interactive Transitions Between Choropleth Map, Prism Map and Bar Chart in Immersive EnvironmentsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.300413727:12(4507-4519)Online publication date: 1-Dec-2021
      • (2020)TRANS-DOCKProceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction10.1145/3374920.3374933(131-142)Online publication date: 9-Feb-2020
      • (2019)ExpanDialProceedings of the 2019 on Designing Interactive Systems Conference10.1145/3322276.3322283(949-961)Online publication date: 18-Jun-2019
      • Show More Cited By

      View Options

      View options

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media