${}_{\text{2}}$min${}^{\text{2/2s}}$: Efficient Linear Reconstruction Filter for Incremental Delta-Sigma ADCs | IEEE Transactions on Signal Processing"/>
Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

L<inline-formula><tex-math notation="LaTeX">${}_{\text{2}}$</tex-math></inline-formula>min<inline-formula><tex-math notation="LaTeX">${}^{\text{2/2s}}$</tex-math></inline-formula>: Efficient Linear Reconstruction Filter for Incremental Delta-Sigma ADCs

Published: 01 January 2023 Publication History

Abstract

While it becomes more challenging to improve the energy efficiency of incremental delta-sigma data converters (IDCs) from the analog circuit design perspective, we propose two novel linear reconstruction filters for IDCs to enhance their performance in a digital way, including the L<inline-formula><tex-math notation="LaTeX">${}_{\mathbf{2}}$</tex-math></inline-formula>min<inline-formula><tex-math notation="LaTeX">${}^{\mathbf{2}}$</tex-math></inline-formula> filter and its symmetric version, the L<inline-formula><tex-math notation="LaTeX">${}_{\mathbf{2}}$</tex-math></inline-formula>min<inline-formula><tex-math notation="LaTeX">${}^{\mathbf{2s}}$</tex-math></inline-formula> filter. Compared to the classical linear reconstruction filters, such as the cascade-of-integrators (CoI) and cascaded integrator-comb (CIC) filter (an implementation of <italic>sinc</italic> filter), the proposed filters can achieve efficient quantization and thermal noise suppression, with the lowest thermal noise penalty factor of 1.2 among the high-order linear reconstruction filters. In this paper, we present analytical, numerical, and experimental results to demonstrate the superior performance of the filters for first-order and second-order IDC output reconstruction. The proposed filters are hardware-friendly and example digital implementations in a standard complementary metal-oxide-semiconductor (CMOS) and field-programmable gate array (FPGA) platforms are included in this paper.

References

[1]
S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta–Sigma Data Converters, 2nd ed. Piscataway, NJ, USA: Wiley-IEEE Press, 2017.
[2]
A. Bhandari, F. Krahmer, and R. Raskar, “On unlimited sampling and reconstruction,” IEEE Trans. Signal Process., vol. 69, no. 21, pp. 3827–3839, Dec. 2020.
[3]
A. Eamaz, K. V. Mishra, F. Yeganegi, and M. Soltanalian, “UNO: Unlimited sampling meets one-bit quantization,” Dec. 2022,.
[4]
L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, “Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors,” IEEE Trans. Inf. Theory, vol. 59, no. 4, pp. 2082–2102, Jan. 2013.
[5]
A. Eamaz, F. Yeganegi, and M. Soltanalian, “One-bit phase retrieval: More samples means less complexity?” IEEE Trans. Signal Process., vol. 70, pp. 4618–4632, 2022.
[6]
A. Eamaz, F. Yeganegi, and M. Soltanalian, “Covariance recovery for one-bit sampled non-stationary signals with time-varying sampling thresholds,” IEEE Trans. Signal Process., vol. 70, pp. 5222–5236, 2022.
[7]
A. Eamaz, F. Yeganegi, and M. Soltanalian, “Covariance recovery for one-bit sampled stationary signals with time-varying sampling thresholds,” Signal Process., vol. 206, 2023, Art. no. 108899.
[8]
A. Eamaz, F. Yeganegi, and M. Soltanalian, “Modified arcsine law for one-bit sampled stationary signals with time-varying thresholds,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. 5459–5463, 2021.
[9]
A. Eamaz, F. Yeganegi, D. Needell, and M. Soltanalian, “ORKA: Accelerated Kaczmarz algorithms for signal recovery from one-bit samples,” Dec. 2022,.
[10]
O. Ordentlich and U. Erez, “Performance analysis and optimal filter design for sigma–delta modulation via duality with DPCM,” IEEE Trans. Inf. Theory, vol. 65, no. 2, pp. 1153–1164, Feb. 2019.
[11]
J. Markus, “Higher-order incremental delta–sigma analog-to-digital converters,” Ph.D. dissertation, Dept. Meas. Inf. Syst., Budapest Univ. Technol. Econ., Budapest, Hungary, 2005.
[12]
B. Wang, M. K. Law, S. B. Belhaouari, and A. Bermak, “Near-optimal decoding of incremental delta–sigma ADC output,” IEEE Trans. Circuits Syst. I, vol. 67, no. 11, pp. 3670–3680, Nov. 2020.
[13]
J. Wagner, P. Vogelmann, and M. Ortmanns, “On the signal filtering property of CT incremental sigma–delta ADCs,” IEEE Trans. Circuits Syst.II, vol. 66, no. 11, pp. 1780–1784, Nov. 2019.
[14]
M. Zhao et al., “A $4\mu W$ bandwidth/power scalable delta–sigma modulator based on swing-enhanced floating inverter amplifiers,” IEEE J. Solid-State Circuits, vol. 57, no. 3, pp. 709–718, Mar. 2022.
[15]
Y. Zhang, C.-H. Chen, T. He, and G. C. Temes, “A 16 b multi-step incremental analog-to-digital converter with single-opamp multi-slope extended counting,” IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 1066–1076, Apr. 2017.
[16]
B. Gönen, S. Karmakar, R. van Veldhoven, and K. A. A. Makinwa, “A continuous-time zoom ADC for low-power audio applications,” IEEE J. Solid-State Circuits, vol. 55, no. 4, pp. 1023–1031, Apr. 2020.
[17]
L. Jie, M. Zhan, X. Tang, and N. Sun, “A 0.014mm${}^{2}$ 10kHz-BW zoom-incremental-counting ADC achieving 103dB SNDR and 100dB full-scale CMRR,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2022.
[18]
J. Huang and P. P. Mercier, “A 178.9-dB FoM 128-dB SFDR VCO-based AFE for ExG readouts with a calibration-free differential pulse code modulation technique,” IEEE J. Solid-State Circuits, vol. 56, no. 11, pp. 3236–3246, Nov. 2021.
[19]
S. Kavusi, H. Kakavand, and A. E. Gamal, “On incremental sigma–delta modulation with optimal filtering,” IEEE Trans. Circuits Syst. I, vol. 53, no. 5, pp. 1004–1015, May 2006.
[20]
E. Hogenauer, “An economical class of digital filters for decimation and interpolation,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 2, pp. 155–162, Apr. 1981.
[21]
J. Wagner, P. Vogelmann, and M. Ortmanns, “Performance evaluation of incremental sigma–delta ADCs based on their NTF,” IEEE Trans. Circuits Syst.II, vol. 67, no. 12, pp. 2813–2817, Dec. 2020.
[22]
J. Steensgaard et al., “Noise–power optimization of incremental data converters,” IEEE Trans. Circuits Syst.I, Reg. Papers, vol. 55, no. 5, pp. 1289–1296, Jun. 2008.
[23]
M. Marijan and Z. Ignjatovic, “Non-linear reconstruction of delta–sigma modulated signals: Randomized surrogate constraint decoding algorithm,” IEEE Trans. Signal Process., vol. 61, no. 21, pp. 5361–5373, Nov. 2013.
[24]
M. A. Miled, M. Sawan, and E. Ghafar-Zadeh, “A dynamic decoder for first-order $\Sigma\Delta$ modulators dedicated to lab-on-chip applications,” IEEE Trans. Signal Process., vol. 57, no. 10, pp. 4076–4084, Oct. 2009.
[25]
I. Wiemer and W. Schwarz, “Direct projection decoding algorithm for sigma–delta modulated signals,” IEEE Trans. Signal Process., vol. 53, no. 5, pp. 1807–1814, May 2005.
[26]
L. G. McIlrath, “A robust $O(N\log N)$ algorithm for optimal decoding of first-order $\Sigma$-$\Delta$ sequences,” IEEE Trans. Signal Process., vol. 50, no. 8, pp. 1942–1950, Aug. 2002.
[27]
S. Hein, “A fast block-based nonlinear decoding algorithm for $\Sigma\Delta$ modulators,” IEEE Trans. Signal Process., vol. 43, no. 6, pp. 1360–1367, Jun. 1995.
[28]
Texas Instruments. “Datasheet of AD126x, Rev. C.” 2006. Accessed: Jun. 2023. [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD7760.pdf
[29]
B. Wang and M.-K. Law, “Subranging BJT-based CMOS temperature sensor with a $\pm$ 0.45${}^{\circ}$C inaccuracy (3$\sigma$) from –50 ${}^{\circ}$C to 180 ${}^{\circ}$C and a resolution-FoM of 7.2 pJ$\cdot$K${}^{2}$ at 150 ${}^{\circ}$C,” IEEE J. Solid-State Circuits, vol. 57, no. 12, pp. 3693–3703, Dec. 2022.
[30]
B. Wang, M.-K. Law, and A. Bermak, “On fully differential incremental $\Delta\Sigma$ ADC with initial feedback zeroing and 1.5-bit feedback,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 1–5, Oct. 2020.
[31]
J. Robert and P. Deval, “A second-order high-resolution incremental A/D converter with offset and charge injection compensation,” IEEE J. Solid-State Circuits, vol. 23, pp. 736–741, Jun. 1988.
[32]
W. Chou and R. M. Gray, “Dithering and its effects on sigma–delta and multistage sigma–delta modulation,” IEEE Trans. Inf. Theory, vol. 37, no. 3, pp. 500–513, May 1991.
[33]
R. Lyons, Understanding Digital Signal Processing, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall, 2004.
[34]
J. Markus, J. Silva, and G. C. Temes, “Theory and applications of incremental $\Delta\Sigma$ converters,” IEEE Trans. Circuits Syst. I, vol. 51, no. 4, pp. 678–690, Apr. 2004.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing  Volume 71, Issue
2023
4282 pages

Publisher

IEEE Press

Publication History

Published: 01 January 2023

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media