Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Model-Based Robust Filtering and Experimental Design for Stochastic Differential Equation Systems

Published: 01 January 2020 Publication History

Abstract

We derive robust linear filtering and experimental design for systems governed by stochastic differential equations (SDEs) under model uncertainty. Given a model of signal and observation processes, an optimal linear filter is found by solving the Wiener-Hopf equation; with model uncertainty, it is desirable to derive a corresponding robust filter. This article assumes that the physical process is modeled via a SDE system with unknown parameters; the signals are degraded by blurring and additive noise. Due to time-dependent stochasticity in SDE systems, the system is nonstationary; and the resulting Wiener-Hopf equation is difficult to solve in closed form. Hence, we discretize the problem to obtain a matrix system to carry out the overall procedure. We further derive an intrinsically Bayesian robust (IBR) linear filter together with an optimal experimental design framework to determine the importance of SDE parameter(s). We apply the theory to an SDE-based pharmacokinetic two-compartment model to estimate drug concentration levels.

References

[1]
T. Kailath, “Lectures on Wiener and Kalman filtering,” in Lectures on Wiener and Kalman Filtering. Berlin, Germany: Springer-Verlag, 1981, pp. 1–143.
[2]
V. N. Fomin, Optimal Filtering: Volume I: Filtering of Stochastic Processes, vol. 457. Berlin, Germany: Springer-Verlag, 2012, pp. 111–119.
[3]
L. A. Dalton and E. R. Dougherty, “Intrinsically optimal Bayesian robust filtering,” IEEE Trans. Signal Process., vol. 62, no. , pp. 657–670, Feb. 2014.
[4]
B.-J. Yoon, X. Qian, and E. R. Dougherty, “Quantifying the objective cost of uncertainty in complex dynamical systems,” IEEE Trans. Signal Process., vol. 61, no. 9, pp. 2256–2266, May 2013.
[5]
R. Dehghannasiri, X. Qian, and E. R. Dougherty, “Optimal experimental design in the context of canonical expansions,” IET Signal Process., vol. 11, no. 8, pp. 942–951, 2017.
[6]
X. Qian and E. R. Dougherty, “Bayesian regression with network prior: Optimal Bayesian filtering perspective,” IEEE Trans. Signal Process., vol. 64, no. 23, pp. 6243–6253, Dec. 2016.
[7]
E. R. Dougherty, Optimal Signal Processing Under Uncertainty. Bellingham, WA, USA: SPIE, 2018.
[8]
V. P. Kuznetsov, “Stable detection when the signal and spectrum of normal noise are inaccurately known,” Telecomm. Radio Eng., vol. 30, no. 3, pp. 58–64, 1976.
[9]
S. A. Kassam and T. L. Lim, “Robust Wiener filters,” J. Franklin Inst., vol. 304, no. 4-5, pp. 171–185, 1977.
[10]
H. Poor, “On robust Wiener filtering,” IEEE Trans. Autom. Control, vol. 25, no. 3, pp. 531–536, Jun. 1980.
[11]
K. Vastola and H. Poor, “Robust Wiener-Kolmogorov theory,” IEEE Trans. Inf. Theory, vol. 30, no. 2, pp. 316–327, Mar. 1984.
[12]
A. M. Grigoryan and E. R. Dougherty, “Design and analysis of robust binary filters in the context of a prior distribution for the states of nature,” J. Math. Imag. Vis., vol. 11, no. 3, pp. 239–254, 1999.
[13]
M. Zorzi, “On the robustness of the Bayes and Wiener estimators under model uncertainty,” Automatica, vol. 83, pp. 133–140, 2017.
[14]
Y. C. Eldar and N. Merhav, “Minimax MSE-ratio estimation with signal covariance uncertainties,” IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1335–1347, Apr. 2005.
[15]
Y. C. Eldar, “Minimax estimation of deterministic parameters in linear models with a random model matrix,” IEEE Trans. Signal Process., vol. 54, no. 2, pp. 601–612, Feb. 2006.
[16]
A. Sani and A. Vosoughi, “On distributed linear estimation with observation model uncertainties,” IEEE Trans. Signal Process., vol. 66, no. 12, pp. 3212–3227, Jun. 2018.
[17]
R. Mehra, “On the identification of variances and adaptive Kalman filtering,” IEEE Trans. Autom. Control, vol. 15, no. 2, pp. 175–184, Apr. 1970.
[18]
S. Sarkka and A. Nummenmaa, “Recursive noise adaptive Kalman filtering by variational Bayesian approximations,” IEEE Trans. Autom. Control, vol. 54, no. 3, pp. 596–600, Mar. 2009.
[19]
O. K. Kwon, W. H. Kwon, and K. S. Lee, “FIR filters and recursive forms for discrete-time state-space models,” Automatica, vol. 25, no. 5, pp. 715–728, 1989.
[20]
Y. S. Shmaliy, “Linear optimal FIR estimation of discrete time-invariant state-space models,” IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3086–3096, Jun. 2010.
[21]
A. H. Sayed, “A framework for state-space estimation with uncertain models,” IEEE Trans. Automa. Control, vol. 46, no. 7, pp. 998–1013, Jun. 2001.
[22]
T. Zhou, “Sensitivity penalization based robust state estimation for uncertain linear systems,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 1018–1024, Apr. 2010.
[23]
T. Zhou, “Robust recursive state estimation with random measurement droppings,” IEEE Trans. Autom. Control, vol. 61, no. 1, pp. 156–171, Jan. 2016.
[24]
R. Dehghannasiri, M. S. Esfahani, and E. R. Dougherty, “Intrinsically Bayesian robust Kalman filter: An innovation process approach,” IEEE Trans. Signal Process., vol. 65, no. 10, pp. 2531–2546, May 2017.
[25]
R. Dehghannasiri, X. Qian, and E. Dougherty, “Bayesian robust Kalman smoother in the presence of unknown noise statistics,” EURASIP J. Adv. Signal Process., vol. 55, pp. 1982–1996, 2018.
[26]
R. Dehghannasiri, B.-J. Yoon, and E. R. Dougherty, “Optimal experimental design for gene regulatory networks in the presence of uncertainty,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 12, no. 4, pp. 938–950, Jul./Aug. 2015.
[27]
D. N. Mohsenizadeh, R. Dehghannasiri, and E. R. Dougherty, “Optimal objective-based experimental design for uncertain dynamical gene networks with experimental error,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 15, no. 1, pp. 218–230, Jan./Feb. 2018.
[28]
H. Kirchauer, F. Hlawatsch, and W. Kozek, “Time-frequency formulation and design of nonstationary Wiener filters,” in Proc. Int. Conf. Acoust., Speech, Signal Process., 1995, vol. 3, pp. 1549–1552.
[29]
Y. Sugiyama, “An algorithm for solving discrete-time Wiener-Hopf equations based upon Euclid's algorithm,” IEEE Trans. Inf. Theory, vol. 32, no. 3, pp. 394–409, May 1986.
[30]
M. Morii, M. Kasahara, and D. L. Whiting, “Efficient bit-serial multiplication and the discrete-time Wiener-Hopf equation over finite fields,” IEEE Trans. Inf. Theory, vol. 35, no. 6, pp. 1177–1183, Nov. 1989.
[31]
S. M. Kay, Fundamentals of Statistical Signal Processing. Englewood Cliffs, NJ, USA: Prentice-Hall, 1993.
[32]
F.-R. Yan et al., “Parameter estimation of population pharmacokinetic models with stochastic differential equations: Implementation of an estimation algorithm,” J. Probability Statist., vol. 2014, pp. 4–5, 2014.
[33]
C. A. Braumann, “Itô versus Stratonovich calculus in random population growth,” Math. Biosciences, vol. 206, no. 1, pp. 81–107, 2007.
[34]
A. Gray, D. Greenhalgh, L. Hu, X. Mao, and J. Pan, “A stochastic differential equation SIS epidemic model,” SIAM J. Appl. Math., vol. 71, no. 3, pp. 876–902, 2011.
[35]
P. Malliavin and A. Thalmaier, Stochastic Calculus of Variations in Mathematical Finance. Berlin, Germany: Springer-Verlag, 2006.
[36]
L. Arnold and A. V. Balakrishnan, “Stochastic differential equations theory and applications,” Bull. Amer. Math. Soc, vol. 81, pp. 837–840, 1975.
[37]
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, vol. 23. Berlin, Germany: Springer-Verlag, 2013.
[38]
D. Coles and M. Prange, “Toward efficient computation of the expected relative entropy for nonlinear experimental design,” Inverse Problems, vol. 28, no. 5, 2012, Art. no.
[39]
L. Shargel, B. Andrew, and S. Wu-Pong, Applied Biopharmaceutics and Pharmacokinetics. New York, NY, USA: Appleton & Lange Stamford, 1999.
[40]
A. Zollanvari and E. R. Dougherty, “Incorporating prior knowledge induced from stochastic differential equations in the classification of stochastic observations,” EURASIP J. Bioinf. Syst. Biol., vol. 2016, no. 1, pp. 1–14, 2016.
[41]
L. A. Dalton and E. R. Dougherty, “Optimal classifiers with minimum expected error within a Bayesian framework-Part I: Discrete and Gaussian models,” Pattern Recognit., vol. 46, no. 5, pp. 1301–1314, 2013.
[42]
R. Dehghannasiri, B.-J. Yoon, and E. R. Dougherty, “Efficient experimental design for uncertainty reduction in gene regulatory networks,” BMC Bioinf., vol. 16, no. 13, pp. 1–18, 2015.
[43]
S. Boluki, X. Qian, and E. R. Dougherty, “Experimental design via generalized mean objective cost of uncertainty,” IEEE Access, vol. 7, pp. 2223–2230, 2018.
[44]
P. I. Frazier, W. B. Powell, and S. Dayanik, “A knowledge-gradient policy for sequential information collection,” SIAM J. Control Optim., vol. 47, no. 5, pp. 2410–2439, 2008.
[45]
D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive black-box functions,” J. Global Optim., vol. 13, no. 4, pp. 455–492, 1998.

Cited By

View all
  • (2023)Neural message-passing for objective-based uncertainty quantification and optimal experimental designEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.106171123:PAOnline publication date: 1-Aug-2023

Index Terms

  1. Model-Based Robust Filtering and Experimental Design for Stochastic Differential Equation Systems
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image IEEE Transactions on Signal Processing
            IEEE Transactions on Signal Processing  Volume 68, Issue
            2020
            1810 pages

            Publisher

            IEEE Press

            Publication History

            Published: 01 January 2020

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 12 Nov 2024

            Other Metrics

            Citations

            Cited By

            View all
            • (2023)Neural message-passing for objective-based uncertainty quantification and optimal experimental designEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.106171123:PAOnline publication date: 1-Aug-2023

            View Options

            View options

            Get Access

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media