Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Handling Data Handoff of AI-Based Applications in Edge Computing Systems

Published: 18 April 2023 Publication History

Abstract

Edge computing aims at better supporting low-latency applications. One of its key techniques is computation offloading, the process that outsources computing tasks from resourced-constrained mobile devices and moves them to edge data centers. In this paper, we tackle an emerging problem within the umbrella of computation offloading, i.e., migration of offloaded inference tasks of Artificial Intelligence (AI) trained models. Such context tailors migration aspects of data-sensitive services where i) the value of the updates is inversely proportional to the data age and ii) outage is highly detrimental to accuracy. To tackle this challenge, we propose Mobile Edge Data-handoff (MED) a framework able to relocate inference or online training tasks from one edge datacenter to another by moving only the necessary data to minimize any accuracy drop during the process. We implemented MED in a well-known edge computing emulator, openLEON, and experimentally verified its performance with an AI-based Industry 4.0 application that forecasts the gas flow in a chemical plant. For our experiments, we use a real, open-source dataset that contains sensors readings. Collected results show that MED, employing proactive data handoff algorithms, is able to minimize the packet loss during the handoff thereby providing guarantees on the inference accuracy.

References

[1]
M. Xuet al., “From cloud to edge: A first look at public edge platforms,” in Proc. IMC, 2021, pp. 37–53.
[2]
Y. Su, W. Fan, Y. Liu, and F. Wu, “A truthful combinatorial auction mechanism towards mobile edge computing in Industrial Internet of Things,” IEEE Trans. Cloud Comput., early access, Mar. 1, 2022. 10.1109/TCC.2022.3155495.
[3]
Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence: Paving the last mile of artificial intelligence with edge computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.
[4]
T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, “Edge computing in Industrial Internet of Things: Architecture, advances and challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 4, pp. 2462–2488, 1st Quart., 2020.
[5]
M. Uddin, M. S. Kodialam, S. Mukherjee, T. V. Lakshman, and M. Uddin, “GLAMAR: Geo-location assisted mobile augmented reality for industrial automation,” in Proc. ACM/IEEE Symp. Edge Comput., Nov. 2020, pp. 232–245.
[6]
Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.
[7]
L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge computing,” Proc. IEEE, vol. 107, no. 8, pp. 1584–1607, Aug. 2019.
[8]
T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.
[9]
C. Fiandrino, N. Allio, D. Kliazovich, P. Giaccone, and P. Bouvry, “Profiling performance of application partitioning for wearable devices in mobile cloud and fog computing,” IEEE Access, vol. 7, pp. 12156–12166, Jan. 2019.
[10]
P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1628–1656, 3rd Quart., 2017.
[11]
T. Taleb, A. Ksentini, and P. A. Frangoudis, “Follow-me cloud: When cloud services follow mobile users,” IEEE Trans. Cloud Comput., vol. 7, no. 2, pp. 369–382, Apr.-Jun. 2019.
[12]
L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers via docker container migration,” in Proc. Second ACM/IEEE Symp. Edge Comput., 2017, pp. 1–13.
[13]
D. Scotece, C. Fiandrino, and L. Foschini, “A practical way to handle service migration of ML-based applications in industrial Analytics,” in Proc. IEEE Global Commun. Conf., 2022, pp. 123–128.
[14]
H. Viswanathan and P. E. Mogensen, “Communications in the 6G era,” IEEE Access, vol. 8, pp. 57063–57074, 2020.
[15]
G. Wikströmet al., “Challenges and technologies for 6G,” in Proc. 6G Wireless Summit (6G SUMMIT), 2020, pp. 1–5.
[16]
S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, “Towards smart factory for industry 4.0: A self-organized multi-agent system with big data based feedback and coordination,” Comput. Netw., vol. 101, pp. 158–168, Jun. 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1389128615005046
[17]
C. Sönmez, S. Baghaee, A. Ergişi, and E. Uysal-Biyikoglu, “Age-of-information in practice: Status age measured over TCP/IP connections through WiFi, Ethernet and LTE,” in Proc. IEEE BlackSeaCom, 2018, pp. 1–5.
[18]
C. Clarket al., “Live migration of virtual machines,” in Proc. 2nd Conf. Symp. Netw. Syst. Design Implement. Vol. 2, 2005, pp. 273–286.
[19]
A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live service migration in mobile edge clouds,” IEEE Wireless Commun., vol. 25, no. 1, pp. 140–147, Feb. 2018.
[20]
S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete container state migration,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2017, pp. 2137–2142.
[21]
N. Tziritaset al., “Data replication and virtual machine migrations to mitigate network overhead in edge computing systems,” IEEE Trans. Sustain. Comput., vol. 2, no. 4, pp. 320–332, Oct.-Dec. 2017.
[22]
T. Z. Emara and J. Z. Huang, “Distributed data strategies to support large-scale data analysis across geo-distributed data Centers,” IEEE Access, vol. 8, pp. 178526–178538, 2020.
[23]
S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration in mobile edge computing,” IEEE Access, vol. 6, pp. 23511–23528, 2018.
[24]
Y. Zeng, M. Chao, and R. Stoleru, “EmuEdge: A hybrid emulator for reproducible and realistic edge computing experiments,” in Proc. IEEE Int. Conf. Fog Comput., Jun. 2019, pp. 1–6.
[25]
R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran, “EmuFog: Extensible and scalable emulation of large-scale fog computing infrastructures,” in Proc. IEEE Fog World Congr., Oct. 2017, pp. 1–6.
[26]
J. Hasenburg, M. Grambow, E. Grünewald, S.Huk, and D. Bermbach, “MockFog: Emulating fog computing infrastructure in the cloud,” in Proc. IEEE Int. Conf. Fog Comput., Jun. 2019, pp. 1–6.
[27]
C. Fiandrino, A. B. Pizarro, P. J. Mateo, C. A. Ramiro, N. Ludant, and J. Widmer, “openLEON: An end-to-end emulation platform from the edge data center to the mobile user,” Comput. Commun., vol. 148, pp. 17–26, Dec. 2019.
[28]
I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano, C. Cano, and D. J. Leith, “srsLTE: An open-source platform for LTE evolution and experimentation,” in Proc. ACM WiNTECH, 2016, pp. 25–32.
[29]
Y. Li, Z. Yuan, and C. Peng, “A control-plane perspective on reducing data access latency in LTE networks,” in Proc. ACM MobiCom, 2017, pp. 56–69.
[30]
Z. Tan, Y. Li, Q. Li, Z. Zhang, Z. Li, and S. Lu, “Supporting mobile VR in LTE networks: How close are we?” Proc. ACM Meas. Anal. Comput. Syst., vol. 2, no. 1, pp. 1–31, Apr. 2018.
[31]
5G-PPP. “White paper: 5G and the factories of the future,” Accessed: Jan. 31, 2022. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf
[32]
Qualcomm. “Ultra-reliable low-latency 5G for industrial automation,” 2021. Accessed: Jan. 31, 2022. [Online]. Available: https://www.qualcomm.com/media/documents/files/read-the-white-paper-by-heavy-reading.pdf
[33]
D. Lopez-Perez, A. Garcia-Rodriguez, L. Galati-Giordano, M. Kasslin, and K. Doppler, “IEEE 802.11be extremely high throughput: The next generation of Wi-Fi technology beyond 802.11ax,” IEEE Commun. Mag., vol. 57, no. 9, pp. 113–119, Sep. 2019.
[34]
I. I. Consortium. “Industrial Analytics: The engine driving the IIoT revolution,” 2021. Accessed: Jan. 31, 2022. [Online]. Available: https://www.iiconsortium.org/pdf/Industrial_Analytics-the_engine_driving_IIoT_revolution_20170321_FINAL.pdf
[35]
Kubernetes. “Production-grade container orchestration,” 2022. Accessed: Jan. 31, 2022. [Online]. Available: https://kubernetes.io/
[36]
P. Bellavista, A. Corradi, L. Foschini, and D. Scotece, “Differentiated service/data migration for edge services leveraging container characteristics,” IEEE Access, vol. 7, pp. 139746–139758, 2019.
[37]
I. Kadota, M. S. Rahman, and E. Modiano, “WiFresh: Age-of-information from theory to implementation,” in Proc. IEEE ICCCN, 2021, pp. 1–11.
[38]
E. Arribaset al., “Optimizing mmWave wireless backhaul scheduling,” IEEE Trans. Mobile Comput., vol. 19, no. 10, pp. 2409–2428, Oct. 2020.
[39]
A. Mozo, B. Ordozgoiti, and S. Gómez-Canaval, “Forecasting short-term data center network traffic load with convolutional neural networks,” PLoS ONE, vol. 13, no. 2, pp. 1–31, Feb. 2018.
[40]
J. Chen, V. C. S. Lee, K. Liu, and J. Li, “Efficient cache management for network-coding-assisted data broadcast,” IEEE Trans. Veh. Technol., vol. 66, no. 4, pp. 3361–3375, Apr. 2017.
[41]
B. Liu, J. Guo, C. Li, and Y. Luo, “Workload forecasting based elastic resource management in edge cloud,” Comput. Ind. Eng., vol. 139, Jan. 2020, Art. no.
[42]
D. Scotece, C. Fiandrino, and L. Foschini, “On the efficiency of service and data handoff protocols in edge computing systems,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2021, pp. 1–6.
[43]
M. Peuster, J. Kampmeyer, and H. Karl, “Containernet 2.0: A rapid prototyping platform for hybrid service function chains,” in Proc. IEEE NetSoft, 2018, pp. 335–337.
[44]
STMicroelectronics. “Motion and environmental sensors for industrial applications,” 2021. Accessed: Jun. 14, 2021. [Online]. Available: https://www.st.com/content/st_com/en/campaigns/industrial_sensors.html
[45]
N. Budhdev, R. Joshi, P. G. Kannan, M. C. Chan, and T. Mitra, “FSA: Fronthaul slicing architecture for 5G using dataplane programmable switches,” in Proc. ACM MobiCom, 2021, pp. 723–735. [Online]. Available: https://doi.org/10.1145/3447993.3483247
[46]
Ponemon. “Data center downtime at the core and the edge: A survey of frequency, duration and attitudes,” 2021. Accessed: Oct. 31, 2021. [Online]. Available: https://www.vertiv.com/490a6d/globalassets/documents/reports/ponemon/vertiv-ponemon-datacenterdowntimesurveyreport_321796_0.pdf
[47]
UptimeInstitute. “Annual outage analysis 2021: The causes and impacts of data center outages,” 2021. Accessed: Oct. 31, 2021. [Online]. Available: https://uptimeinstitute.com/annual-outage-analysis-2021
[48]
Y. Mao, Y. Fu, W. Zheng, L. Cheng, Q. Liu, and D. Tao, “Speculative container scheduling for deep learning applications in a Kubernetes cluster,” IEEE Syst. J., vol. 16, no. 3, pp. 3770–3781, Sep. 2022.
[49]
A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing IoT service delay via fog offloading,” IEEE Internet Things J., vol. 5, no. 2, pp. 998–1010, Apr. 2018.
[50]
S. Mubeen, P. Nikolaidis, A. Didic, H. Pei-Breivold, K. Sandström, and M. Behnam, “Delay mitigation in offloaded cloud controllers in industrial IoT,” IEEE Access, vol. 5, pp. 4418–4430, 2017.
[51]
X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, “Performance guaranteed computation offloading for mobile-edge cloud computing,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 774–777, Dec. 2017.
[52]
C. You, K. Huang, H. Chae, and B. Kim, “Energy-efficient resource allocation for mobile-edge computation offloading,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.
[53]
J. Zhang, W. Xia, F. Yan, and L. Shen, “Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing,” IEEE Access, vol. 6, pp. 19324–19337, 2018.
[54]
P. Zhouet al., “5G MEC computation handoff for mobile augmented reality,” 2021, arXiv:2101.00256. [Online]. Available: https://www.semanticscholar.org/paper/5G-MEC-Computation-Handoff-for-Mobile-Augmented-Zhou-Finley/63f58d6d53a40d079e49dc088a1022ab2ccbc04e
[55]
K. Kaur, S. Garg, G. S. Aujla, N. Kumar, J. J. P. C. Rodrigues, and M. Guizani, “Edge computing in the industrial Internet of Things environment: Software-defined-networks-based edge-cloud interplay,” IEEE Commun. Mag., vol. 56, no. 2, pp. 44–51, Feb. 2018.
[56]
H. Guo and J. Liu, “Collaborative computation offloading for Multiaccess edge computing over fiber–wireless networks,” IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4514–4526, May 2018.
[57]
K. Haet al., “Adaptive VM handoff across cloudlets,” School Comput. Sci., Carnegie Mellon Univ., Tech. Rep. CMU-CS-15–113, 2015.
[58]
M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration of virtual machines,” ACM SIGOPS Oper. Syst. Rev., vol. 43, no. 3, pp. 14–26, Jul. 2009.
[59]
K. Haet al., “You can teach elephants to dance: Agile VM handoff for edge computing,” in Proc. ACM/IEEE SEC, Oct. 2017, p. 12.
[60]
T. Benjaponpitak, M. Karakate, and K. Sripanidkulchai, “Enabling live migration of containerized applications across clouds,” in Proc. IEEE INFOCOM, 2020, pp. 2529–2538.
[61]
A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “DepSky: Dependable and secure storage in a cloud-of-clouds,” ACM Trans. Storage, vol. 9, no. 4, pp. 1–33, Nov. 2013.
[62]
L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. C. M. Lau, “Moving big data to the cloud,” in Proc. IEEE INFOCOM, 2013, pp. 405–409.
[63]
Z. Usmani and S. Singh, “A survey of virtual machine placement techniques in a cloud data Center,” Procedia Comput. Sci., vol. 78, pp. 491–498, Dec. 2016.
[64]
X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center networks with traffic-aware virtual machine placement,” in Proc. IEEE INFOCOM, 2010, pp. 1154–1162.
[65]
T. Sigwele, A. S. Alam, P. Pillai, and Y. F. Hu, “Energy-efficient cloud radio access networks by cloud based workload consolidation for 5G,” J. Netw. Comput. Appl., vol. 78, pp. 1–8, Jan. 2017.
[66]
J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM placement and routing for data center traffic engineering,” in Proc. IEEE INFOCOM, 2012, pp. 2876–2880.
[67]
J. Burgués, J. M. Jiménez-Soto, and S. Marco, “Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models,” Analytica Chimica Acta, vol. 1013, pp. 13–25, Jul. 2018. [Online]. Available: https://doi.org/10.1016/j.aca.2018.01.062

Index Terms

  1. Handling Data Handoff of AI-Based Applications in Edge Computing Systems
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image IEEE Transactions on Network and Service Management
        IEEE Transactions on Network and Service Management  Volume 20, Issue 4
        Dec. 2023
        1216 pages

        Publisher

        IEEE Press

        Publication History

        Published: 18 April 2023

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 24 Nov 2024

        Other Metrics

        Citations

        View Options

        View options

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media