Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

An Adaptation of the Vector-Space Model for Ontology-Based Information Retrieval

Published: 01 February 2007 Publication History

Abstract

Semantic search has been one of the motivations of the Semantic Web since it was envisioned. We propose a model for the exploitation of ontology-based knowledge bases to improve search over large document repositories. In our view of Information Retrieval on the Semantic Web, a search engine returns documents rather than, or in addition to, exact values in response to user queries. For this purpose, our approach includes an ontology-based scheme for the semiautomatic annotation of documents and a retrieval system. The retrieval model is based on an adaptation of the classic vector-space model, including an annotation weighting algorithm, and a ranking algorithm. Semantic search is combined with conventional keyword-based retrieval to achieve tolerance to knowledge base incompleteness. Experiments are shown where our approach is tested on corpora of significant scale, showing clear improvements with respect to keyword-based search.

References

[1]
M. Agosti, F. Crestani, G. Gradenigo, and P. Mattiello, “An Approach to Conceptual Modelling of IR Auxiliary Data,” Proc. IEEE Int'l Conf. Computer and Comm., 1990.
[2]
P. Castells, M. Fernández, D. Vallet, P. Mylonas, and Y. Avrithis, “Self-Tuning Personalized Information Retrieval in an Ontology-Based Framework,” Proc. First Int'l Workshop Web Semantics (SWWS '05), 2005.
[3]
P. Castells, B. Foncillas, R. Lara, M. Rico, and J.L. Alonso, “Semantic Web Technologies for Economic and Financial Information Management,” Proc. First European Semantic Web Symp. (ESWS '04), 2004.
[4]
P. Castells, F. Perdrix, E. Pulido, M. Rico, V.R. Benjamins, J. Contreras, and J. Lorés, “Neptuno: Semantic Web Technologies for a Digital Newspaper Archive,” Proc. First European Semantic Web Symp. (ESWS '04), 2004.
[5]
V. Christophides, G. Karvounarakis, D. Plexousakis, and S. Tourtounis, “Optimizing Taxonomic Semantic Web Queries Using Labeling Schemes,” J. Web Semantics, vol. 1, no. 2, pp. 207-228, 2003.
[6]
J. Contreras, V.R. Benjamins, M. Blázquez, S. Losada, R. Salla, J. Sevilla, D. Navarro, J. Casillas, A. Mompó, D. Patón, O. Corcho, P. Tena, and I. Martos, “A Semantic Portal for the International Affairs Sector,” Proc. 14th Int'l Conf. Knowledge Eng. and Knowledge Management (EKAW '04), 2004.
[7]
M. Cristani and R. Cuel, “A Survey on Ontology Creation Methodologies,” Int'l J. Semantic Web and Information Systems, vol. 1, no. 2, pp. 49-69, 2005.
[8]
W.B. Croft, “Combining Approaches to Information Retrieval,” Advances in Information Retrieval, pp. 1-36, Kluwer Academic, 2000.
[9]
S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman, “Indexing by Latent Semantic Analysis,” J. Am. Soc. Information Science, vol. 41, no. 6, pp. 391-407, 1990.
[10]
S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, K.S. McCurley, S. Rajagopalan, A. Tomkins, J.A. Tomlin, and J.Y. Zien, “A Case for Automated Large Scale Semantic Annotation,” J. Web Semantics, vol. 1, no. 1, pp. 115-132, 2003.
[11]
M. Fernández, D. Vallet, and P. Castells, “Probabilistic Score Normalization for Rank Aggregation,” Proc. 28th European Conf. Information Retrieval (ECIR '06), 2006.
[12]
S. Gauch, J. Chaffee, and A. Pretschner, “Ontology-Based Personalized Search and Browsing,” Web Intelligence and Agent Systems, vol. 1, nos. 3-4, pp. 219-234, 2003.
[13]
A. Gómez-Pérez, M. Fernández-López, and O. Corcho, Ontological Engineering. Springer-Verlag, 2003.
[14]
J. Gonzalo, F. Verdejo, I. Chugur, and J. Cigarrán, “Indexing with WordNet Synsets Can Improve Text Retrieval,” Proc. COLING/ACL Workshop Usage of WordNet for Natural Language Processing, 1998.
[15]
N. Guarino, C. Masolo, and G. Vetere, “OntoSeek: Content-Based Access to the Web,” IEEE Intelligent Systems, vol. 14, no. 3, pp. 70-80, 1990.
[16]
R.V. Guha, R. McCool, and E. Miller, “Semantic Search,” Proc. 12th Int'l World Wide Web Conf. (WWW '03), pp. 700-709, 2003.
[17]
S. Handschuh, S. Staab, and F. Ciravegna, “S-Cream—Semi-Automatic Creation of Metadata,” Proc. 13th Int'l Conf. Knowledge Eng. and Knowledge Management—Ontologies and the Semantic Web (EKAW '02), 2002.
[18]
K. Jörvelin, J. Kekäläinen, and T. Niemi, “ExpansionTool: Concept-Based Query Expansion and Construction,” Information Retrieval, vol. 4, nos. 3-4, pp. 231-255, 2001.
[19]
G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl, “RQL: A Declarative Query Language for RDF,” Proc. 11th Int'l World Wide Web Conf. (WWW '02), 2002.
[20]
A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff, “Semantic Annotation, Indexing, and Retrieval,” J. Web Semantics, vol. 2, no. 1, pp. 49-79, 2004.
[21]
J.H. Lee, “Analysis of Multiple Evidence Combination,” Proc. 20th ACM Int'l Conf. Research and Development in Information Retrieval (SIGIR '97), pp. 267-276, 1997.
[22]
P. Lehti and P. Fankhauser, “SWQL—A Query Language for Data Integration Based on OWL,” Proc. OTM Workshops, 2005.
[23]
T.A. Letsche and M.W. Berry, “Large-Scale Information Retrieval with Latent Semantic Indexing,” Information Sciences—Applications, vol. 100, nos. 1-4, pp. 105-137, 1997.
[24]
A. Maedche, S. Staab, N. Stojanovic, R. Studer, and Y. Sure, “SEmantic portAL: The SEAL Approach,” Spinning the Semantic Web, pp. 317-359, 2003.
[25]
R. Madala, T. Takenobu, and T. Hozumi, “The Use of WordNet in Information Retrieval. Montreal,” Proc. Conf. Use of WordNet in Natural Language Processing Systems, pp. 31-37, 1998.
[26]
J. Mayfield and T. Finin, “Information Retrieval on the Semantic Web: Integrating Inference and Retrieval,” Proc. Workshop Semantic Web at the 26th Int'l ACM SIGIR Conf. Research and Development in Information Retrieval, 2003.
[27]
P. Mitra, M. Kersten, and G. Wiederhold, “A Graph-Oriented Model for Articulation of Ontology Interdependencies,” Proc. Conf. Extending Database Technology (EDBT '00), 2000.
[28]
B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, and A. Kirilov, “KIM—A Semantic Platform for Information Extraction and Retrieval,” J. Natural Language Eng., vol. 10, nos. 3-4, pp. 375-392, 2004.
[29]
E. Prud'hommeaux and A. Seaborne, “SPARQL Query Language for RDF,” W3C working draft, http://www.w3.org/TR/rdf-sparql-query, 2006.
[30]
C. Rocha, D. Schwabe, and M.P. de Aragão, “A Hybrid Approach for Searching in the Semantic Web,” Proc. 13th Int'l World Wide Web Conf. (WWW '04), pp. 374-383, 2004.
[31]
G. Salton and M. McGill, Introduction to Modern Information Retrieval. McGraw-Hill, 1983.
[32]
A. Seaborne, “RDQL—A Query Language for RDF,” W3C member submission, http://www.w3.org/Submission/RDQL, 2004.
[33]
A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut, and Y. Warke, “Managing Semantic Content for the Web,” IEEE Internet Computing, vol. 6, no. 4, pp. 80-87, 2002.
[34]
Handbook on Ontologies. S. Staab, and R. Studer, eds. Springer Verlag, 2004.
[35]
N. Stojanovic, “On Analysing Query Ambiguity for Query Refinement: The Librarian Agent Approach,” Proc. 22nd Int'l Conf. Conceptual Modeling, 2003.
[36]
N. Stojanovic, R. Studer, and L. Stojanovic, “An Approach for the Ranking of Query Results in the Semantic Web,” Proc. Second Int'l Semantic Web Conf., 2003.
[37]
D. Vallet, M. Fernández, and P. Castells, “An Ontology-Based Information Retrieval Model,” Proc. Second European Semantic Web Conf. (ESWC '05), 2005.

Cited By

View all
  • (2023)A Retrieve-and-Read Framework for Knowledge Graph Link PredictionProceedings of the 32nd ACM International Conference on Information and Knowledge Management10.1145/3583780.3614769(1992-2002)Online publication date: 21-Oct-2023
  • (2022)SM-BERT-CR: a deep learning approach for case law retrieval with supporting modelArtificial Intelligence and Law10.1007/s10506-022-09319-631:3(601-628)Online publication date: 10-Aug-2022
  • (2022)A comprehensive review of digital twin — part 1: modeling and twinning enabling technologiesStructural and Multidisciplinary Optimization10.1007/s00158-022-03425-465:12Online publication date: 1-Dec-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering  Volume 19, Issue 2
February 2007
197 pages

Publisher

IEEE Educational Activities Department

United States

Publication History

Published: 01 February 2007

Author Tags

  1. Information retrieval models
  2. ontology languages
  3. semantic Web.
  4. semantic search

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)A Retrieve-and-Read Framework for Knowledge Graph Link PredictionProceedings of the 32nd ACM International Conference on Information and Knowledge Management10.1145/3583780.3614769(1992-2002)Online publication date: 21-Oct-2023
  • (2022)SM-BERT-CR: a deep learning approach for case law retrieval with supporting modelArtificial Intelligence and Law10.1007/s10506-022-09319-631:3(601-628)Online publication date: 10-Aug-2022
  • (2022)A comprehensive review of digital twin — part 1: modeling and twinning enabling technologiesStructural and Multidisciplinary Optimization10.1007/s00158-022-03425-465:12Online publication date: 1-Dec-2022
  • (2020)A social-semantic recommender system for advertisementsInformation Processing and Management: an International Journal10.1016/j.ipm.2019.10215357:2Online publication date: 1-Mar-2020
  • (2019)Modeling Information Retrieval by Formal LogicACM Computing Surveys10.1145/329104352:1(1-37)Online publication date: 21-Feb-2019
  • (2019)Application of Parallel Vector Space Model for Large-Scale DNA Sequence AnalysisJournal of Grid Computing10.1007/s10723-018-9451-517:2(313-324)Online publication date: 1-Jun-2019
  • (2019)A hybrid approach using genetic algorithm and the differential evolution heuristic for enhanced initialization of the k-means algorithm with applications in text clusteringSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-018-3289-423:15(6361-6378)Online publication date: 1-Aug-2019
  • (2018)Dynamic Search Engine Platform for Cloud Service Level Agreements Using Semantic AnnotationInternational Journal on Semantic Web & Information Systems10.4018/IJSWIS.201807010414:3(70-98)Online publication date: 1-Jul-2018
  • (2018)A personalised user preference and feature based semantic information retrieval system in semantic web searchInternational Journal of Grid and Utility Computing10.1504/IJGUC.2018.0939879:3(256-267)Online publication date: 1-Jan-2018
  • (2018)State-of-artProceedings of the 4th International Conference on Communication and Information Processing10.1145/3290420.3290473(33-37)Online publication date: 2-Nov-2018
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media