Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

The Hermitian Dual Codes of Several Classes of BCH Codes

Published: 01 July 2023 Publication History

Abstract

As a special subclass of cyclic codes, BCH codes are usually among the best cyclic codes and have wide applications in communication and storage systems and consumer electronics. Let <inline-formula> <tex-math notation="LaTeX">$\mathcal C$ </tex-math></inline-formula> be a <inline-formula> <tex-math notation="LaTeX">$q^{2}$ </tex-math></inline-formula>-ary BCH code of length <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> with respect to an <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-th primitive root of unity <inline-formula> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula> over an extension field of <inline-formula> <tex-math notation="LaTeX">$\Bbb F_{q^{2}}$ </tex-math></inline-formula>, and let <inline-formula> <tex-math notation="LaTeX">$\mathcal C^{\perp H}$ </tex-math></inline-formula> denote its Hermitian dual code, where <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> is a prime power. If both <inline-formula> <tex-math notation="LaTeX">$\mathcal {C}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\mathcal C^{\perp H}$ </tex-math></inline-formula> are a BCH code with respect to an <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-th primitive root of unity <inline-formula> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula>, then <inline-formula> <tex-math notation="LaTeX">$\mathcal C$ </tex-math></inline-formula> is called a <italic>Hermitian dually-BCH code</italic>. The objective of this paper is to derive a necessary and sufficient condition for ensuring that two classes of narrow-sense BCH codes are Hermitian dually-BCH codes. As by-products, lower bounds on the minimum distances of the Hermitian dual codes of these BCH codes are developed, which improve the lower bounds documented in IEEE Trans. Inf. Theory, vol. 68, no. 2, pp. 953-964, 2022, in some cases.

References

[1]
S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, “On quantum and classical BCH codes,” IEEE Trans. Inf. Theory, vol. 53, no. 3, pp. 1183–1188, Mar. 2007.
[2]
D. Augot, P. Charpin, and N. Sendrier, “Studying the locator polynomials of minimum weight codewords of BCH codes,” IEEE Trans. Inf. Theory, vol. 38, no. 3, pp. 960–973, May 1992.
[3]
D. Augot and N. Sendrier, “Idempotents and the BCH bound,” IEEE Trans. Inf. Theory, vol. 40, no. 1, pp. 204–207, Jan. 1994.
[4]
E. R. Berlekamp, “The enumeration of information symbols in BCH codes,” Bell Syst. Tech. J., vol. 46, no. 8, pp. 1861–1880, Oct. 1967.
[5]
P. Charpin, “Open problems on cyclic codes,” in Handbook Coding Theory, vol. 1, V. S. Pless and W. C. Huffman, Eds. Amsterdam, The Netherlands: Elsevier, 1998, ch. 11, pp. 963–1063.
[6]
P. Charpin, “On a class of primitive BCH-codes,” IEEE Trans. Inf. Theory, vol. 36, no. 1, pp. 222–228, Jan. 1990.
[7]
Y. Desaki, T. Fujiwara, and T. Kasami, “The weight distributions of extended binary primitive BCH codes of length 128,” IEEE Trans. Inf. Theory, vol. 43, no. 4, pp. 1364–1371, Jul. 1997.
[8]
C. Ding, “Parameters of several classes of BCH codes,” IEEE Trans. Inf. Theory, vol. 61, no. 10, pp. 5322–5330, Oct. 2015.
[9]
C. Ding, X. Du, and Z. Zhou, “The Bose and minimum distance of a class of BCH codes,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2351–2356, May 2015.
[10]
C. Ding, C. L. Fan, and Z. C. Zhou, “The dimension and minimum distance of two classes of primitive BCH codes,” Finite Fields Appl., vol. 45, pp. 237–263, May 2017.
[11]
C. Ding and C. Tang, Designs From Linear Codes, 2nd Ed. Singapore: World Scientific, 2022.
[12]
C. Ding and J. Yang, “Hamming weights in irreducible cyclic codes,” Discrete Math., vol. 313, no. 4, pp. 434–446, 2013.
[13]
Z. Du, C. Li, and S. Mesnager, “Constructions of self-orthogonal codes from hulls of BCH codes and their parameters,” IEEE Trans. Inf. Theory, vol. 66, no. 11, pp. 6774–6785, Nov. 2020.
[14]
B. Gong, C. Ding, and C. Li, “The dual codes of several classes of BCH codes,” IEEE Trans. Inf. Theory, vol. 68, no. 2, pp. 953–964, Feb. 2022.
[15]
M. Grassl. Bounds on the Minimum Distance of Linear Codes and Quantum Codes. Accessed: Jul. 3, 2022. [Online]. Available: https://www.codetables.de
[16]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes. Cambridge, U.K.: Cambridge Univ. Press, 2003.
[17]
T. Kasami and S. Lin, “Some results on the minimum weight of BCH codes,” IEEE Trans. Inf. Theory, vol. IT-18, no. 6, pp. 824–825, Nov. 1972.
[18]
C. Li, C. Ding, and S. Li, “LCD cyclic codes over finite fields,” IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4344–4356, Jul. 2017.
[19]
S. Li, “The minimum distance of some narrow-sense primitive BCH codes,” SIAM J. Discrete Math., vol. 31, no. 4, pp. 2530–2569, 2017.
[20]
S. Li, C. Ding, M. Xiong, and G. Ge, “Narrow-sense BCH codes over GF(q) with length n=qm-1/q-1,” IEEE Trans. Inf. Theory, vol. 63, no. 11, pp. 7219–7236, Aug. 2017.
[21]
H. Liu, C. Ding, and C. Li, “Dimensions of three types of BCH codes over GF(q),” Discrete Math., vol. 340, pp. 1910–1927, Jan. 2017.
[22]
Y. Liu, R. Li, Q. Fu, L. Lu, and Y. Rao, “Some binary BCH codes with length n=2m+1,” Finite Fields Their Appl., vol. 55, pp. 109–133, Jan. 2019.
[23]
H. B. Mann, “On the number of information symbols in Bose-Chaudhuri codes,” Inf. Control, vol. 5, no. 2, pp. 153–162, 1962.
[24]
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Amsterdam, The Netherlands: North-Holland Mathematical Library, 1977.
[25]
S. Noguchi, X.-N. Lu, M. Jimbo, and Y. Miao, “BCH codes with minimum distance proportional to code length,” SIAM J. Discrete Math., vol. 35, no. 1, pp. 179–193, Jan. 2021.
[26]
X. Shi, Q. Yue, and Y. Wu, “The dual-containing primitive BCH codes with the maximum designed distance and their applications to quantum codes,” Des., Codes Cryptogr., vol. 87, no. 9, pp. 2165–2183, Sep. 2019.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Information Theory
IEEE Transactions on Information Theory  Volume 69, Issue 7
July 2023
684 pages

Publisher

IEEE Press

Publication History

Published: 01 July 2023

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media