Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Adaptive Fuzzy Dynamic Surface Control of Nonlinear Constrained Systems With Unknown Virtual Control Coefficients

Published: 01 August 2020 Publication History

Abstract

This paper studies the problem of adaptive fuzzy dynamic surface control (DSC) of nonstrict-feedback nonlinear systems subject to unknown virtual control coefficients, dead zone, and full state constraints. The Nussbaum gain technique is used to overcome the difficulty caused by the unknown virtual control coefficients. By utilizing the information of tan-type barrier Lyapunov function, the requirement of full state constraints is successfully achieved. In addition, to handle the problem of “explosion of complexity” resulted from backstepping itself, a DSC approach using the sliding mode differentiator is introduced. Then, based on backstepping control, we develop a new adaptive fuzzy DSC strategy, which ensures that all state constrains are not violated via designing parameters appropriately. Meanwhile, other signals existing in the closed-loop system are bounded. Finally, comparative results are provided to illustrate the effectiveness of the proposed approach.

References

[1]
L.-X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 1, no. 2, pp. 146–155, May 1993.
[2]
S. Tong and Y. Li, “Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones,” IEEE Trans. Fuzzy Syst., vol. 20, no. 1, pp. 168–180, Feb. 2012.
[3]
D. Tong, P. Rao, Q. Chen, M. J. Ogorzalek, and X. Li, “Exponential synchronization and phase locking of a multilayer kuramoto-oscillator system with a pacemaker,” Neurocomputing, vol. 308, pp. 129–137, 2018.
[4]
Y.-J. Liu, S. Tong, and C. L. P. Chen, “Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics,” IEEE Trans. Fuzzy Syst., vol. 21, no. 2, pp. 275–288, Apr. 2013.
[5]
X. Sun and Q. Zhang, “Observer-based adaptive sliding mode control for T-S fuzzy singular systems,” IEEE Trans. Syst., Man, Cybern., Syst., to be published.
[6]
S. S. Ge and C. Wang, “Adaptive neural control of uncertain MIMO nonlinear systems,” IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 674–692, May 2004.
[7]
Z. Zhang, H. Liang, C. Wu, and C. K. Ahn, “Adaptive event-triggered output feedback fuzzy control for nonlinear networked systems with packet dropouts and actuator failure,” IEEE Trans. Fuzzy Syst., to be published.
[8]
D. Tong, W. Zhou, X. Zhou, J. Yang, L. Zhang, and Y. Xu, “Exponential synchronization for stochastic neural networks with multi-delayed and Markovian switching via adaptive feedback control,” Commun. Nonlinear Sci. Numer. Simul., vol. 29, no. 1–3, pp. 359–371, 2015.
[9]
G. Wen, C. L. P. Chen, S. S. Ge, H. Yang, and X. Liu, “Optimized adaptive nonlinear tracking control using actor-critic reinforcement learning strategy,” IEEE Trans. Ind. Inform., to be published.
[10]
Z. Liu, F. Wang, Y. Zhang, and C. L. P. Chen, “Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems,” IEEE Trans. Cybern., vol. 46, no. 2, pp. 524–534, Feb. 2016.
[11]
C. L. P. Chen, Y.-J. Liu, and G.-X. Wen, “Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems,” IEEE Trans. Cybern., vol. 44, no. 5, pp. 583–593, May 2014.
[12]
T. Zhang, S. S. Ge, and C. C. Hang, “Adaptive neural network control for strict-feedback nonlinear systems using backstepping design,” Automatica, vol. 36, no. 12, pp. 1835–1846, Dec. 2000.
[13]
C. L. P. Chen, G.-X. Wen, Y.-J. Liu, and Z. Liu, “Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems,” IEEE Trans. Cybern., vol. 46, no. 7, pp. 1591–1601, Jul. 2016.
[14]
H. Wang, P. X. Liu, S. Li, and D. Wang, “Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 8, pp. 3658–3668, Aug. 2018.
[15]
K. Sun, S. Mou, J. Qiu, T. Wang, and H. Gao, “Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints,” IEEE Trans. Fuzzy Syst., to be published.
[16]
C. Wu, J. Liu, Y. Xiong, and L. Wu, “Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7, pp. 3022–3033, Jul. 2018.
[17]
L. Cao, H. Li, N. Wang, and Q. Zhou, “Observer-based event-triggered adaptive decentralized fuzzy control for nonlinear large-scale systems,” IEEE Trans. Fuzzy Syst., vol. 27, no. 6, pp. 1201–1214, Jun. 2019.
[18]
S. Sui, S. Tong, and C. P. Chen, “Finite-time filter decentralized control for nonstrict-feedback nonlinear large-scale systems,” IEEE Trans. Fuzzy Syst., vol. 26, no. 6, pp. 3289–3300, Dec. 2018.
[19]
B. Chen, H. Zhang, X. Liu, and C. Lin, “Neural observer and adaptive neural control design for a class of nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 9, pp. 4261–4271, Sep. 2018.
[20]
C. Wu, J. Liu, X. Jing, H. Li, and L. Wu, “Adaptive fuzzy control for nonlinear networked control systems,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 8, pp. 2420–2430, Aug. 2017.
[21]
S. Jagannathan and P. He, “Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form,” IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2073–2087, Dec. 2008.
[22]
B. Chen, X. P. Liu, S. S. Ge, and C. Lin, “Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach,” IEEE Trans. Fuzzy Syst., vol. 20, no. 6, pp. 1012–1021, Dec. 2012.
[23]
S. Tong, Y. Li, and S. Sui, “Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 24, no. 6, pp. 1441–1454, Dec. 2016.
[24]
Y.-J. Liu, S. Lu, D. Li, and S. Tong, “Adaptive controller design-based ABLF for a class of nonlinear time-varying state constraint systems,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 7, pp. 1546–1553, Jul. 2017.
[25]
H. Li, S. Zhao, W. He, and R. Lu, “Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone,” Automatica, vol. 100, pp. 99–107, 2019.
[26]
Y.-J. Liu and S. Tong, “Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints,” Automatica, vol. 64, pp. 70–75, 2016.
[27]
K. P. Tee and S. S. Ge, “Control of nonlinear systems with partial state constraints using a barrier Lyapunov function,” Int. J. Control, vol. 84, no. 12, pp. 2008–2023, 2011.
[28]
D.-P. Li, Y.-J. Liu, S. Tong, C. L. P. Chen, and D.-J. Li, “Neural networks-based adaptive control for nonlinear state constrained systems with input delay,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1249–1258, Apr. 2019.
[29]
L. Liu, Y.-J. Liu, and S. Tong, “Fuzzy based multi-error constraint control for switched nonlinear systems and its applications,” IEEE Trans. Fuzzy Syst., to be published.
[30]
H. Ma, H. Li, H. Liang, and G. Dong, “Adaptive fuzzy event-triggered control for stochastic nonlinear systems with full state constraints and actuator faults,” IEEE Trans. Fuzzy Syst., to be published.
[31]
X. Jin and J.-X. Xu, “Iterative learning control for output-constrained systems with both parametric and nonparametric uncertainties,” Automatica, vol. 49, no. 8, pp. 2508–2516, 2013.
[32]
D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, “Dynamic surface control for a class of nonlinear systems,” IEEE Trans. Autom. Control, vol. 45, no. 10, pp. 1893–1899, Oct. 2000.
[33]
S. J. Yoo, J. B. Park, and Y. H. Choi, “Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays,” IEEE Trans. Autom. Control, vol. 52, no. 12, pp. 2360–2365, Dec. 2007.
[34]
Y. Li, S. Tong, and T. Li, “Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems,” IEEE Trans. Cybern., vol. 45, no. 1, pp. 138–149, Jan. 2015.
[35]
D. Wang and J. Huang, “Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form,” IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 195–202, Jan. 2005.
[36]
M. Chen and S. S. Ge, “Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7706–7716, Dec. 2015.
[37]
W. Wang and S. Tong, “Adaptive fuzzy bounded control for consensus of multiple strict-feedback nonlinear systems,” IEEE Trans. Cybern., vol. 48, no. 2, pp. 522–531, Feb. 2018.
[38]
R. D. Nussbaum, “Some remarks on a conjecture in parameter adaptive control,” Syst. Control Lett., vol. 3, no. 5, pp. 243–246, 1983.
[39]
T. Zhang and S. S. Ge, “Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs,” Automatica, vol. 43, no. 6, pp. 1021–1033, 2007.
[40]
C. Yang, S. S. Ge, and T. H. Lee, “Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions,” Automatica, vol. 45, no. 1, pp. 270–276, 2009.
[41]
S. Tong and Y. Li, “Fuzzy adaptive robust backstepping stabilization for SISO nonlinear systems with unknown virtual control direction,” Inf. Sci., vol. 180, no. 23, pp. 4619–4640, 2010.
[42]
J. Huang, W. Wang, C. Wen, and J. Zhou, “Adaptive control of a class of strict-feedback time-varying nonlinear systems with unknown control coefficients,” Automatica, vol. 93, pp. 98–105, 2018.
[43]
S. S. Ge, F. Hong, and T. H. Lee, “Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients,” IEEE Trans. Syst., Man, Cybern., vol. 34, no. 1, pp. 499–516, Feb. 2004.
[44]
Y. Li, T. Li, and X. Jing, “Indirect adaptive fuzzy control for input and output constrained nonlinear systems using a barrier Lyapunov function,” Int. J. Adapt. Control Signal Process., vol. 28, no. 2, pp. 184–199, 2014.
[45]
J. Ma, Z. Zheng, and P. Li, “Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation,” IEEE Trans. Cybern., vol. 45, no. 4, pp. 728–741, Apr. 2015.
[46]
S. Yin, H. Gao, J. Qiu, and O. Kaynak, “Adaptive fault-tolerant control for nonlinear system with unknown control directions based on fuzzy approximation,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 8, pp. 1909–1918, Aug. 2017.
[47]
H. Lee and M. Tomizuka, “Robust adaptive control using a universal approximator for SISO nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 8, no. 1, pp. 95–106, Feb. 2000.

Cited By

View all
  • (2024)Event-Based Adaptive Fuzzy Constrained Control for Nonlinear Multiagent Systems via State-Error Unified Barrier Function ApproachIEEE Transactions on Fuzzy Systems10.1109/TFUZZ.2024.342951332:10(5827-5835)Online publication date: 1-Oct-2024
  • (2023)System Transformation-Based Event-Triggered Fuzzy Control for State Constrained Nonlinear Systems With Unknown Control DirectionsIEEE Transactions on Fuzzy Systems10.1109/TFUZZ.2022.322456531:7(2331-2344)Online publication date: 1-Jul-2023
  • (2022)A New Adaptive Controller for Nonlinear Systems with Uncertain Virtual Control GainsComplexity10.1155/2022/74080772022Online publication date: 1-Jan-2022
  • Show More Cited By

Index Terms

  1. Adaptive Fuzzy Dynamic Surface Control of Nonlinear Constrained Systems With Unknown Virtual Control Coefficients
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image IEEE Transactions on Fuzzy Systems
            IEEE Transactions on Fuzzy Systems  Volume 28, Issue 8
            Aug. 2020
            377 pages

            Publisher

            IEEE Press

            Publication History

            Published: 01 August 2020

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 24 Nov 2024

            Other Metrics

            Citations

            Cited By

            View all
            • (2024)Event-Based Adaptive Fuzzy Constrained Control for Nonlinear Multiagent Systems via State-Error Unified Barrier Function ApproachIEEE Transactions on Fuzzy Systems10.1109/TFUZZ.2024.342951332:10(5827-5835)Online publication date: 1-Oct-2024
            • (2023)System Transformation-Based Event-Triggered Fuzzy Control for State Constrained Nonlinear Systems With Unknown Control DirectionsIEEE Transactions on Fuzzy Systems10.1109/TFUZZ.2022.322456531:7(2331-2344)Online publication date: 1-Jul-2023
            • (2022)A New Adaptive Controller for Nonlinear Systems with Uncertain Virtual Control GainsComplexity10.1155/2022/74080772022Online publication date: 1-Jan-2022
            • (2021)Adaptive Sliding Mode Control for a Class of Manipulator Systems with Output ConstraintComplexity10.1155/2021/66427952021Online publication date: 1-Jan-2021
            • (2021)Indirect Fuzzy Control of Nonlinear Systems With Unknown Input and State Hysteresis Using an Alternative Adaptive InverseIEEE Transactions on Fuzzy Systems10.1109/TFUZZ.2019.295278329:3(500-514)Online publication date: 26-Feb-2021
            • (2021)Event-Triggered Adaptive Fuzzy Tracking Control for Uncertain Nonlinear Systems with Time-Delay and State ConstraintsCircuits, Systems, and Signal Processing10.1007/s00034-021-01802-w41:2(636-660)Online publication date: 4-Aug-2021
            • (2021)Fuzzy approximation‐based adaptive control of nonstrict feedback stochastic nonlinear systems with time‐varying state constraintsInternational Journal of Adaptive Control and Signal Processing10.1002/acs.332535:11(2296-2313)Online publication date: 2-Nov-2021

            View Options

            View options

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media