Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Scaffolding of Ancient Contigs and Ancestral Reconstruction in a Phylogenetic Framework

Published: 01 November 2018 Publication History

Abstract

Ancestral genome reconstruction is an important task to analyze the evolution of genomes. Recent progress in sequencing ancient DNA led to the publication of so-called paleogenomes and allows the integration of this sequencing data in genome evolution analysis. However, the de novo assembly of ancient genomes is usually fragmented due to DNA degradation over time among others. Integrated phylogenetic assembly addresses the issue of genome fragmentation in the ancient DNA assembly while aiming to improve the reconstruction of all ancient genomes in the phylogeny simultaneously. The fragmented assembly of the ancient genome can be represented as an assembly graph, indicating contradicting ordering information of contigs. In this setting, our approach is to compare the ancient data with extant finished genomes. We generalize a reconstruction approach minimizing the Single-Cut-or-Join rearrangement distance towards multifurcating trees and include edge lengths to improve the reconstruction in practice. This results in a polynomial time algorithm that includes additional ancient DNA data at one node in the tree, resulting in consistent reconstructions of ancestral genomes.

References

[1]
D. Bertrand, Y. Gagnon, M. Blanchette, and N. El-Mabrouk, "Reconstruction of ancestral genome subject to whole genome duplication, speciation, rearrangement and loss," in Proc. Int. Workshop Algorithms Bioinf., 2010, pp. 78-89.
[2]
G. Bourque and P. A. Pevzner, "Genome-scale evolution: Reconstructing gene orders in the ancestral species," Genome Res., vol. 12, no. 1, pp. 26-36, 2002.
[3]
C. Chauve and E. Tannier, "A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes," PLoS Comput. Biol., vol. 4, no. 11, 2008, Art. no. e1000234.
[4]
J. Ma, L. Zhang, B. B. Suh, B. J. Raney, R. C. Burhans, W. J. Kent, M. Blanchette, D. Haussler, and W. Miller, "Reconstructing contiguous regions of an ancestral genome," Genome Res., vol. 16, no. 12, pp. 1557-1565, 2006.
[5]
J. Stoye and R. Wittler, "A unified approach for reconstructing ancient gene clusters," IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 6, no. 3, pp. 387-400, Jul.-Sep. 2009.
[6]
C. Zheng and D. Sankoff, "On the PATHGROUPS approach to rapid small phylogeny," BMC Bioinf., vol. 12, 2011, Art. no. S4.
[7]
K. I. Bos, V. J. Schuenemann, G. B. Golding, H. A. Burbano, N. Waglechner, B. K. Coombes, J. B. McPhee, S. N. DeWitte, M. Meyer, S. Schmedeset al., "A draft genome of Yersinia pestis from victims of the Black Death," Nature, vol. 478, no. 7370, pp. 506-510, 2011.
[8]
L. Orlando, A. Ginolhac, G. Zhang, D. Froese, A. Albrechtsen, M. Stiller, M. Schubert, E. Cappellini, B. Petersen, I. Moltke, et al., "Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse," Nature, vol. 499, pp. 74-78, 2013.
[9]
M. D. Martin, E. Cappellini, J. A. Samaniego, M. L. Zepeda, P. F. Campos, A. Seguin-Orlando, N. Wales, L. Orlando, S. Y. W. Ho, F. S. Dietrich, et al., "Reconstructing genome evolution in historic samples of the Irish potato famine pathogen," Nature Commun., vol. 4, 2013, Art. no. 2172.
[10]
V. J. Schuenemann, P. Singh, T. A. Mendum, B. Krause-Kyora, G. Jäger, K. I. Bos, A. Herbig, C. Economou, A. Benjak, P. Busso, et al., "Genome-wide comparison of medieval and modern Mycobacterium leprae," Sci., vol. 341, pp. 179-183, 2013.
[11]
M. Drancourt and D. Raoult, "Palaemicrobiology: Current issues and perspectives," Nature Rev. Microbiol., vol. 3, pp. 23-35, 2005.
[12]
A. Rajaraman, E. Tannier, and C. Chauve, "FPSAC: Fast phylogenetic scaffolding of ancient contigs," Bioinf., vol. 29, no. 23, pp. 2987-2994, 2013.
[13]
J. Ma?uch, M. Patterson, R. Wittler, C. Chauve, and E. Tannier, "Linearization of ancestral multichromosomal genomes," BMC Bioinf., vol. 13, no. Suppl 19, 2012, Art. no. S11.
[14]
E. Tannier, C. Zheng, and D. Sankoff, "Multichromosomal median and halving problems under different genomic distances," BMC Bioinf., vol. 10, no. 1, 2009, Art. no. 120.
[15]
P. Feijão and J. Meidanis, "SCJ: A breakpoint-like distance that simplifies several rearrangement problems," IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 8, no. 5, pp. 1318-1329, Sep./Oct. 2011.
[16]
N. Luhmann, M. Lafond, A. Thevenin, A. Ouangraoua, R. Wittler, and C. Chauve, "The SCJ small parsimony problem for weighted gene adjacencies," IEEE/ACM Trans. Comput. Biol. Bioinf., to be published.
[17]
N. Luhmann, C. Chauve, J. Stoye, and R. Wittler, "Scaffolding of ancient contigs and ancestral reconstruction in a phylogenetic framework," in Proc. Brazilian Symp. Bioinf., 2014, pp. 135-143.
[18]
W. M. Fitch, "Toward defining the course of evolution: Minimum change for a specific tree topology," Systematic Biol., vol. 20, no. 4, pp. 406-416, 1971.
[19]
D. Sankoff and P. Rousseau, "Locating the vertices of a Steiner tree in an arbitrary metric space," Math. Program., vol. 9, no. 1, pp. 240-246, 1975.
[20]
M. Cs?rös, "How to infer ancestral genome features by parsimony: Dynamic programming over an evolutionary tree," in Proc. Models Algorithms Genome Evolution, 2013, pp. 29-45.
[21]
V. Deshpande, E. D. Fung, S. Pham, and V. Bafna, "Cerulean: A hybrid assembly using high throughput short and long reads," in Proc. Int. Workshop Algorithms Bioinf., 2013, pp. 349-363.
[22]
N. Luhmann, D. Doerr, and C. Chauve, "Comparative scaffolding and gap filling of ancient bacterial genomes applied to two ancient yersinia pestis genomes," Microbial Genomics, vol. 3, no. 9, 2017, Art. no. e000123.
[23]
P. Biller, P. Feijão, and J. Meidanis, "Rearrangement-based phylogeny using the single-cut-or-join operation," IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 10, no. 1, pp. 122-134, Jan.-Mar. 2013.
[24]
J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and I. Birol, "ABySS: A parallel assembler for short read sequence data," Genome Res., vol. 19, no. 6, pp. 1117-1123, 2009.
[25]
M. Kolmogorov, B. Raney, B. Paten, and S. Pham, "Ragout--A reference-assisted assembly tool for bacterial genomes," Bioinf., vol. 30, no. 12, pp. i302-i309, 2014.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE/ACM Transactions on Computational Biology and Bioinformatics
IEEE/ACM Transactions on Computational Biology and Bioinformatics  Volume 15, Issue 6
November 2018
349 pages

Publisher

IEEE Computer Society Press

Washington, DC, United States

Publication History

Published: 01 November 2018
Published in TCBB Volume 15, Issue 6

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 23
    Total Downloads
  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media