Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Predicting microbial interactions using vector autoregressive model with graph regularization

Published: 01 March 2015 Publication History

Abstract

Microbial interactions play important roles on the structure and function of complex microbial communities. With the rapid accumulation of high-throughput metagenomic or 16S rRNA sequencing data, it is possible to infer complex microbial interactions. Co-occurrence patterns of microbial species among multiple samples are often utilized to infer interactions. There are few methods to consider the temporally interacting patterns among microbial species. In this paper, we present a Graph-regularized Vector Autoregressive (GVAR) model to infer causal relationships among microbial entities. The new model has advantage comparing to the original vector autoregressive (VAR) model. Specifically, GVAR can incorporate similarity information for microbial interaction inference--i.e., GVAR assumed that if two species are similar in the previous stage, they tend to have similar influence on the other species in the next stage. We apply the model on a time series dataset of human gut microbiome which was treated with repeated antibiotics. The experimental results indicate that the new approach has better performance than several other VAR-based models and demonstrate its capability of extracting relevant microbial interactions.

References

[1]
J. A. Fuhrman, "Microbial community structure and its functional implications," Nature, vol. 459, no. 7244, pp. 193-199, May 2009.
[2]
S. Chaffron, H. Rehrauer, J. Pernthaler, and C. von Mering, "A global network of coexisting microbes from environmental and whole-genome sequence data," Genome Res., vol. 20, no. 7, pp. 947-959, Jul. 2010.
[3]
M. L. Zupancic, B. L. Cantarel, Z. Liu, E. F. Drabek, K. A. Ryan, S. Cirimotich, C. Jones, R. Knight, W. A. Walters, D. Knights, E. F. Mongodin, R. B. Horenstein, B. D. Mitchell, N. Steinle, S. Snitker, A. R. Shuldiner, and C. M. Fraser, "Analysis of the gut microbiota in the old order amish and its relation to the metabolic syndrome," PLoS One, vol. 7, no. 8, p. e43052, 2012.
[4]
D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti, "Detecting novel associations in large data sets," Science, vol. 334, no. 6062, pp. 1518-1524, Dec. 2011.
[5]
T. Speed, "Mathematics. A correlation for the 21st century," Science, vol. 334, no. 6062, pp. 1502-1503, Dec. 2011.
[6]
O. Koren, J. K. Goodrich, T. C. Cullender A. Spor, K. Laitinen, H. K. Backhed, A. Gonzalez, J. J. Werner, L. T. Angenent, R. Knight, F. Backhed, E. Isolauri, S. Salminen, and R. E. Ley, "Host remodeling of the gut microbiome and metabolic changes during pregnancy," Cell, vol. 150, no. 3, pp. 470-480, Aug. 2012.
[7]
K. Faust, J. F. Sathirapongsasuti, J. Izard, N. Segata, D. Gevers, J. Raes, and C. Huttenhower, "Microbial co-occurrence relationships in the human microbiome," PLoS Comput. Biol., vol. 8, no. 7, p. e1002606, 2012.
[8]
J. Friedman and E. J. Alm, "Inferring correlation networks from genomic survey data," PLoS Comput. Biol., vol. 8, no. 9, p. e1002687, 2012.
[9]
K. Faust and J. Raes, "Microbial interactions: From networks to models," Nat. Rev. Microbiol., vol. 10, no. 8, pp. 538-550, Aug. 2012.
[10]
G. K. Gerber, "The dynamic microbiome," FEBS Lett, In Press. http://dx.doi.org/10.1016/j.febslet.2014.02.037.
[11]
A. V. Mardanov, M. M. Babykin, A. V. Beletsky, A. I. Grigoriev, V. V. Zinchenko, V. V. Kadnikov, M. P. Kirpichnikov, A. M. Mazur, A. V. Nedoluzhko, N. D. Novikova, E. B. Prokhortchouk, N. V. Ravin, K. G. Skryabin, and S. V. Shestakov, "Metagenomic analysis of the dynamic changes in the gut microbiome of the participants of the mars-500 experiment, simulating long term space flight," Acta Naturae, vol. 5, no. 3, pp. 116-125, Jul. 2013.
[12]
Y. J. Hu, Z. Y. Shao, Q. Wang, Y. T. Jiang, R. Ma, Z. S. Tang, Z. Liu, J. P. Liang, and Z. W. Huang, "Exploring the dynamic core microbiome of plaque microbiota during head-and-neck radiotherapy using pyrosequencing," PLoS One, vol. 8, no. 2, p. e56343, 2013.
[13]
Y. Wang, T. M. Gilbreath III, P. Kukutla, G. Yan, and J. Xu, "Dynamic gut microbiome across life history of the malaria mosquito anopheles gambiae in kenya," PLoS One, vol. 6, no. 9, p. e24767, 2011.
[14]
L. W. Parfrey and R. Knight, "Spatial and temporal variability of the human microbiota," Clin. Microbiol. Infection, vol. 18, Suppl. 4, pp. 8-11, Jul. 2012.
[15]
X. Jiang, X. Hu, W. Xu, G. Li, and Y. Wang, "Inference of microbial interactions from time series data using vector autoregression model," in Proc. IEEE Int. Conf. Bioinformat. Biomed., 2013, pp. 82- 85.
[16]
A. Fujita, J. R. Sato, H. M. Garay-Malpartida, R. Yamaguchi, S. Miyano, M. C. Sogayar, and C. E. Ferreira "Modeling gene expression regulatory networks with the sparse vector autoregressive model," BMC Syst. Biol., vol. 1, p. 39, 2007.
[17]
J. C. Rajapakse and P. A. Mundra, "Stability of building gene regulatory networks with sparse autoregressive models," BMC Bioinformat., vol. 12, Suppl. 13, p. S17, Nov. 2011.
[18]
P. A. Valdes-Sosa, J. M. Sanchez-Bornot, A. Lage-Castellanos, A. Lage-Castellanos, M. Vega-Hernandez, J. Bosch-Bayard, L. Melie-Garcia, and E. Canales-Rodriguez, "Estimating brain functional connectivity with sparse multivariate autoregression," Philos. Trans. Royal Soc. Lond. B. Biol. Sci., vol. 360, no. 1457, pp. 969-981, May 2005.
[19]
F. R. K. Chung, Spectral Graph Theory (Volume 92 of CBMS Regional Conference Series). Providence, RI, USA: American Mathematical Society, 1997.
[20]
S. C. Wheelwright, R. Hyndman, and S. Makridakis, Forecasting: Methods and Applications. New York, NY, USA: Wiley, 1998.
[21]
L. Dethlefsen and D. A. Relman, "Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation," Proc. Nat. Acad. Sci. USA, vol. 108, Suppl. 1, pp. 4554-4561, Mar. 2011.
[22]
R. Opgen-Rhein and K. Strimmer, "Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process," BMC Bioinformatics, vol. 8, Suppl. 2, p. S3, 2007.
[23]
M. Detto, A. Molini, G. Katul, P. Stoy, S. Palmroth, and D. Baldocchi, "Causality and persistence in ecological systems: A nonparametric spectral granger causality approach," Amer. Nat., vol. 179, no. 4, pp. 524-535, Apr. 2012.
[24]
A. K. Seghouane and S. Amari, "Identification of directed influence: Granger causality, Kullback-Leibler divergence, and complexity," Neural Comput., vol. 24, no. 7, pp. 1722-1739, Jul. 2012.
[25]
H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," J. Royal Stat. Soc. Series B-Stat. Methodol., vol. 67, pp. 301-320, 2005.
[26]
R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Royal Stat. Soc. Ser. B (Methodol.), vol. 53, no. 1, pp. 267-288, 1996.
[27]
B. D. Causey, "A frequentist analysis of a class of ridge-regression estimators," J. Amer. Stat. Assoc., vol. 75, no. 371, pp. 736-738, 1980.
[28]
C. Li and H. Li, "Network-constrained regularization and variable selection for analysis of genomic data," Bioinformatics, vol. 24, no. 9, pp. 1175-1182, May 2008.
[29]
J. Friedman, T. Hastie, and R. Tibshirani, "Regularization paths for generalized linear models via coordinate descent," J. Stat. Softw., vol. 33, no. 1, pp. 1-22, 2010.
[30]
J. Q. Fan, J. C. Lv, and L. Qi, "Sparse high-dimensional models in economics," Annu. Rev. Econ., vol. 3, pp. 291-317, 2011.

Cited By

View all
  • (2015)Weighted fusion regularisation and predicting microbial interactions with vector autoregressive modelInternational Journal of Data Mining and Bioinformatics10.1504/IJDMB.2015.07275713:4(378-394)Online publication date: 1-Oct-2015

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE/ACM Transactions on Computational Biology and Bioinformatics
IEEE/ACM Transactions on Computational Biology and Bioinformatics  Volume 12, Issue 2
March/April 2015
247 pages
ISSN:1545-5963
  • Editor:
  • Ying Xu
Issue’s Table of Contents

Publisher

IEEE Computer Society Press

Washington, DC, United States

Publication History

Published: 01 March 2015
Accepted: 15 June 2014
Revised: 01 June 2014
Received: 30 March 2014
Published in TCBB Volume 12, Issue 2

Author Tags

  1. biological network
  2. gut microbiome
  3. microbial interaction
  4. time series analysis
  5. vector autoregressive model

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2015)Weighted fusion regularisation and predicting microbial interactions with vector autoregressive modelInternational Journal of Data Mining and Bioinformatics10.1504/IJDMB.2015.07275713:4(378-394)Online publication date: 1-Oct-2015

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media