Nothing Special   »   [go: up one dir, main page]

skip to main content
article

A basic protein comparative three-dimensional modeling methodological workflow theory and practice

Published: 01 November 2014 Publication History

Abstract

When working with proteins and studying its properties, it is crucial to have access to the three-dimensional structure of the molecule. If experimentally solved structures are not available, comparative modeling techniques can be used to generate useful protein models to subsidize structure-based research projects. In recent years, with Bioinformatics becoming the basis for the study of protein structures, there is a crescent need for the exposure of details about the algorithms behind the softwares and servers, as well as a need for protocols to guide in silico predictive experiments. In this article, we explore different steps of the comparative modeling technique, such as template identification, sequence alignment, generation of candidate structures and quality assessment, its peculiarities and theoretical description. We then present a practical step-by-step workflow, to support the Biologist on the in silico generation of protein structures. Finally, we explore further steps on comparative modeling, presenting perspectives to the study of protein structures through Bioinformatics. We trust that this is a thorough guide for beginners that wish to work on the comparative modeling of proteins.

References

[1]
J. Moult, K. Fidelis, A. Kryshtafovych, and A. Tramontano, "Critical assessment of methods of protein structure prediction (CASP)--Round IX," Proteins, vol. 79 no. Suppl 10, pp. 1-5, Oct. 2011.
[2]
T. Castrignanò, P. O. De. Meo, D. Cozzetto, I. G. Talamo, and A. Tramontano, "The PMDB protein model database," Nucleic Acids Res., vol. 34, no. Suppl 1, pp. D306-D309, Jan. 2006.
[3]
J. Moult, J. T. Pedersen, R. Judson, and K. Fidelis "A large-scale experiment to assess protein structure prediction methods," Proteins, vol. 23, no. 3, pp. 2-5, Feb. 2004.
[4]
D. Baker and A. Sali, "Protein structure prediction and structural genomics," Science, vol. 294, no. 5540, pp. 93-96, Oct. 2001.
[5]
R. Sánchez, U. Pieper, F. Melo, N. Eswar, M. A. Martí-Renom, M. S. Madhusudhan, N. Mirkovic, and A. Sali, "Protein structure modeling for structural genomics," Nature Struct. Bio., vol. 7, pp. 986-990, Nov. 2000.
[6]
M. A. Marti-Renom, A. C. Stuart, A. Fiser, R. Sánchez, F. Melo, and A. Sali, "Comparative protein structure modeling of genes and genomes," Annu. Rev. Biophys. Biomolecular Struct., vol. 29, pp. 291-325, 2000.
[7]
S. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool," J. Molecular Biol., vol. 215, no. 3, pp. 403-410, Oct. 1990.
[8]
H. Berman, K. Henrick, and H. Nakamura, "Announcing the worldwide protein data bank," Nature Struct. Biol., vol. 10, no. 12, p. 980, Dec. 2003.
[9]
L. Holm and P. Rosenström, "Dali server: Conservation mapping in 3D," Nucleic Acids Res., vol. 38, pp. W545-W549, Jul. 2010.
[10]
Y. Ye and A. Godzika, "FATCAT: A web server for flexible structure comparison and structure similarity searching," Nucleic Acids Res., vol. 32, pp. W582-W585, Jul. 2004.
[11]
W. R. Pearson, M. L. Sierk, "The limits of protein sequence comparison?," Current Opinion Struct. Biol., vol. 15, no. 3, pp. 254- 260, Jun. 2005.
[12]
S. Henikoff and J. G. Henikoff, "Amino acid substitution matrices from protein blocks," Proc. Nat. Acad. Sci. USA, vol. 89, no. 22, pp. 10915-10919, Nov. 1992.
[13]
W. J. Wilbur, "On the PAM matrix model of protein evolution," Molecular Biol. Evol. vol. 2, no. 5, pp. 434-447, 1985.
[14]
W. J. Wilbur and D. J. Lipman, "Rapid similarity searches of nucleic acid and protein data banks," Proc. Nat. Acad. Sci. USA, vol. 80, no. 3, pp. 726-730, Feb. 1983.
[15]
W. R. Pearson, "Empirical statistical estimates for sequence similarity searches," J. Molecular Biol., vol. 276, no. 1, pp. 71-84, 1998.
[16]
N. Eswar, B. Webb, M. A. Marti-Renom, M. S. Madhusudhan, D. Eramian, M. Y. Shen, U. Pieper, and A. Sali, "Comparative protein structure modeling using MODELLER," Current Protocols Protein Sci., vol. 2, no. 2.9, Nov. 2007.
[17]
A. Sali and J. P. Overington, "Derivation of rules for comparative protein modeling from a database of protein structure alignments," Protein Sci., vol. 3, no. 9, pp. 1582-1596, Sep. 1994.
[18]
A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, Jr., and J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, "All-atom empirical potential for molecular modeling and dynamics studies of proteins," J. Phys. Chemistry B, vol. 102, no. 18, pp. 3586-3616, 1998.
[19]
A. L. Morris, M. W. MacArthur, E. G. Hutchinson, and J. M. Thornton, "Stereochemical quality of protein structure coordinates," Proteins, vol. 12, pp. 345-364, Apr. 1992.
[20]
M. Wiederstein and M. J. Sippl, "ProSa-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins," Nucleic Acids Res., vol. 35, pp. W407-W410, Jul. 2007.
[21]
S. R. Eddy, "Accelerated profile HMM searches," PLoS Comput. Biol., vol. 7, no. 10, p. e1002195, Oct. 2011.
[22]
M. T. Buenavista, D. B. Roche, L. J. McGuffin, "Improvement of 3D protein models using multiple templates guided by single-template model quality assessment," Bioinformat., vol. 28, no. 14, pp. 1851-1857, Jul. 2012.
[23]
V. Mariani, F. Kiefer, T. Schmidt, J. Haas, and T. Schwede, "Assessment of template based protein structure predictions in CASP9," Proteins, vol. 79, no. Suppl 10, pp. 91-106, Oct. 2011.
[24]
A. Kryshtafovych, K. Fidelis, K. A. Tramontano, "Evaluation of model quality predictions in CASP9," Proteins, vol. 79, no. Suppl 10, pp. 91-106, Oct. 2011.
[25]
D. Xu, J. Zhang, A. Roy, and Y. Zhang, "Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement," Proteins, vol. 79, no. Suppl 10, pp. 147-160, Oct. 2011.
[26]
J. Pei, N. V. Grishin, "PROMALS: Towards accurate multiple sequence alignments of distantly related proteins," Bioinformat., vol. 23, no. 7, pp. 802-808, Jan. 2007.
[27]
N. M. Scherer, D. M. Basso, "DNATagger, colors for codons," Genetics Molecular Res., vol. 7, no. 3, pp. 853-860, Sep. 2008.
[28]
D. T. Jones, "Protein secondary structure prediction based on position-specific scoring matrices," J. Molecular Biol., vol. 292, no. 2, pp. 195-202, Sep. 1999.
[29]
P. H. M. Calixto, M. Bitar, K. A. M. Ferreira, O. Abrahão, and E. Lages-Silva, G. R. Franco, L. E. Ramírez, and A. L. Pedrosa, "Gene identification and comparative molecular modeling of a trypanosoma rangeli major surface protease," J. Molecular Model., vol. 19, no. 8, pp. 3053-3064, Apr. 2013.
[30]
R. Ordog, "PyDeT, a PyMOL plug-in for visualizing geometric concepts around proteins," Bioinform., vol. 2, no. 8, pp. 346-347, May 2008.
[31]
T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, N. A Baker, "PDB2PQR: An automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations," Nucleic Acids Res., vol. 32, pp. 665-667, Jul. 2004.
[32]
W. Humphrey, A. Dalke, and K. Schulten, "VMD--Visual molecular dynamics," J. Molecular Graph., vol. 14, no. 1, pp. 33-38, Feb. 1996.
[33]
E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, and D. M. Greenblatt, et al., "UCSF Chimera--A visualization system for exploratory research and analysis," J. Comput. Chemistry, vol. 25, no. 13, pp. 1605-1612, Oct. 2004.
[34]
C. Dominguez, R. Boelens, A. M. Bonvin, "HADDOCK: A protein-protein docking approach based on biochemical or biophysical information," J. Amer. Chemical Soc. vol. 125, no. 7, pp. 1731-1737, Feb. 2003.
[35]
A. F. L. Bernardes and M. Bitar, "Comparative modeling reveals the structure of Staphylococcus aureus Enterotoxin D," Periódico Científico do Núcleo de Biociências Centro Universitário Metodista Izabela Hendrix, vol. 3, no. 6, pp. 91-105, Dec. 2013.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE/ACM Transactions on Computational Biology and Bioinformatics
IEEE/ACM Transactions on Computational Biology and Bioinformatics  Volume 11, Issue 6
November/December 2014
290 pages
ISSN:1545-5963
  • Editor:
  • Ying Xu
Issue’s Table of Contents

Publisher

IEEE Computer Society Press

Washington, DC, United States

Publication History

Published: 01 November 2014
Accepted: 09 May 2014
Revised: 21 April 2014
Received: 24 September 2013
Published in TCBB Volume 11, Issue 6

Author Tags

  1. BLAST
  2. ProSa
  3. comparative modeling
  4. modeller
  5. procheck
  6. protein structure

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 60
    Total Downloads
  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Nov 2024

Other Metrics

Citations

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media