Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1109/PIMRC.2017.8292584guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Dynamic UWB off-body radio channels — Human body shadowing effect

Published: 08 October 2017 Publication History

Abstract

Dynamic off-body ultra wideband channels are examined by way of anechoic chamber measurements at a 3–5 GHz frequency band in frequency domain with a help of a fast sweeping vector network analyzer. Five antenna locations on the body are selected: right wrist, left wrist with an antenna on the palm or back side, left arm (AL) and left ankle (LA). The off body node is set at a pole (PO). Two in-house designed and manufactured prototype antennas, dipole and double loop, are used in cases with both similar and dissimilar antennas in a link. Depending on the case, the path loss (PL) ranges between 46.2–87.9 dB. The LA-PO has the highest and AL-PO the lowest average PLs. The PL amplitudes follow the inverse Gaussian distribution. Based on the level crossing rate the LA-PO has the deepest fading conditions and the AL-PO is the most stable link. The LA-PO has the largest average fade duration (AFD) at the thresholds below 0 dB. The AFD is larger on the average with the dipole than the double loop. The comparison of similar vs. dissimilar antenna pairs shows no major difference in the performance.

References

[1]
P. S. Hall and Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications, 2nd ed. Norwood, MA, Artech House, 2012, pp. 1–16.
[2]
R. D'Errico, K. Yekeh Yazdandoost, R. Rosini, K. Sayrafian, T. Kumpuniemi, S. Cotton, and M. Mackowiak, Eds., “Wireless Body Area Communications”, in Cooperative Radio Communications for Green Smart Environments, N. Cardona, Ed. Gistrup, Denmark, River Publishers, 2016, pp. 151–194.
[3]
I. Oppermann, M. Hämäläinen, and J. Iinatti (eds.), UWB Theory and Applications, West Sussex, England, John Wiley & Sons, 2004, pp. 1–8.
[4]
M. Ghawami, L.B. Michael, and R. Kohno, Ultra Wideband Signals and Systems in Communication Engineering, Second Edition, West Sussex, England, John Wiley & Sons, 2007, pp. 1–24.
[5]
IEEE standard for local and metropolitan area networks-Part 15.6: wireless body area networks, IEEE Standard 802.15.6-2012, 2012.
[6]
K. Pahlavan and P. Krishnamurthy, Principles of Wireless Networks-A Unified Approach, Upper Saddle River, NJ, Prentice-Hall, 2002, pp. 39–84.
[7]
R. Rosini and R. D'Errico, “Off-body channel modelling at 2.45 GHz for two different antennas”, in Proc. 6th Eur. Conf. on Antennas and Propag. (EUCAP), 2011, pp. 3378–3382.
[8]
S. K. Yoo and S. L. Cotton, “Shadowed fading in indoor off-body communications channels: a statistical characterization using the x-μ/gamma composite fading model”, IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 5231–5244, Aug. 2016.
[9]
M. M. Khan, Q. H. Abbasi, A. Alomainy, Y. Hao, and C. Parini, “Experimental characterization of ultra-wideband off-body radio channels considering antenna effects”, IET Microw. Antennas Propag., vol. 7, iss. 7, pp. 370–380, Apr. 2013.
[10]
A. J. Ali, W. G. Scanlon, and S. L. Cotton, “Pedestrian effects in indoor UWB off-body communication channels”, in Proc. 2010 Loughborough Antennas & Propag. Conf., 2010, pp. 57–60.
[11]
R.-G. Garcia-Serna, C. Garcia-Pardo, and J. Molina-Garcia-Pardo, “Effect of the receiver attachment position on ultrawideband off-body channels”, IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1101–1104, May 2015.
[12]
P. A. Catherwood and W. G. Scanlon, “Body-centric antenna positioning effects for off-body UWB communications in a contemporary learning environment”, in Proc. 8th Eur. Conf. on Antennas and Propag. (EUCAP), 2014, pp. 1571–1574.
[13]
O. P. Pasquero and R. D'Errico, “A Spatial Model of the UWB Off-Body channel in Indoor Environments”, IEEE Trans. Antennas Propag., vol. 64, no. 9, pp. 3981–3989, Sept. 2016.
[14]
T. Kumpuniemi, M. Hämäläinen, K. Yekeh Yazdandoost, and J. Iinatti, “Human Body Shadowing Effect on Dynamic UWB On-Body Radio Channels”, IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1871–1874, Jan. 2017. https://doi.org/10.1109/LAWp.2017.2656246.
[15]
T. Tuovinen, T. Kumpuniemi, K. Yekeh Yazdandoost, M. Hämäläinen, and J. Iinatti, “Effect of the antenna-human body distance on the antenna matching in UWB WBAN applications”, in Proc. 7th Int. Symp. on Medical Inform. and Commun. Technol. (ISMICT), 2013, pp. 193–197.
[16]
T. Tuovinen, T. Kumpuniemi, M. Hämäläinen, K. Yekeh Yazdandoost, and J. Iinatti, “Effect of the antenna-body distance on the on-ext and on-on channel link path gain in UWB WBAN applications”, in Proc. 35th Annu. Int. Conf. IEEE Eng. in Medicine and Biology Soc. (EMBC), 2013, pp. 1242–1245.
[17]
T. Kumpuniemi, M. Hämäläinen, K. Yekeh Yazdandoost, and J. Iinatti, “Measurements for body-to-body UWB WBAN radio channels”, in Proc. 9th Eur. Conf. on Antennas and Propag. (EUCAP), 2015, pp. 1–5.
[18]
N. Keränen, M. Särestöniemi, J. Partala, M. Hämäläinen, J. Reponen, T. Seppänen, J. Iinatti, and T. Jämsä, “IEEE802.15.6-based multi-accelerometer WBAN system for monitoring Parkinson's disease”, in Proc. 35th Annu. Int. Conf. IEEE Eng. in Medicine and Biology Society (EMBC), 2013, pp. 1656–1659.
[19]
S. R. Saunders and A. Aragón-Zavala, Antennas and Propagation for Wireless Communication Systems, 2nd ed. Chichester, West Sussex, England, John Wiley & Sons, 2007, pp. 209–240.
[20]
B. Denis and J. K. Keignart, “Post-processing framework for enhanced UWB channel modeling from band-limited measurements”, in Proc. 2003 IEEE Conf. on Ultra Wideband Systems and Technologies (UWBST), 2003, pp. 260–264.
[21]
K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference, A Practical Information-Theoretic Approach, 2nd ed. New York, USA, Springer-Verlag, 2002, pp. 60–72.
[22]
A. F. Molisch, K. Balakrishnan, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, J. Karedal, J. Kunisch, H. Schantz, U. Schuster, and K. Siwiak, “IEEE 802.15.4a channel model-final report”, IEEE 802.15.4a channel modeling subgroup, 2004, pp. 1–40.
[23]
M. Rausand and A. Hoyland, System Reliability Theory, Models, Statistical Methods, and Applications, Hoboken, USA, John Wiley & Sons, 2004, pp. 41–54.
[24]
W.R. Braun and U. Dersch, “A physical mobile radio channel model”, IEEE Trans. Veh. Technol., vol. 40, no. 2, May 1991, pp. 472–482.
[25]
U. G. Schuster and H. Bõlcskei, “Ultrawideband channel modeling on the basis of information-theoretic criteria”, IEEE Trans. Wireless Commun., vol. 6, no 7, pp. 2464–2475, July 2007.
[26]
A. Fort, C. Desset, P. De Doncker, and P. Wamback, “An ultrawideband body area propagation channel model-from statistics to implementation”, IEEE Trans. Microw. Theory Techn., vol. 54, no 4, pp. 1820–1826, Apr. 2006.

Index Terms

  1. Dynamic UWB off-body radio channels — Human body shadowing effect
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Guide Proceedings
          2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)
          Oct 2017
          3617 pages
          ISBN:978-1-5386-3529-2

          Publisher

          IEEE Press

          Publication History

          Published: 08 October 2017

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 12 Feb 2025

          Other Metrics

          Citations

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media