Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

5G-Enabled Tactile Internet

Published: 01 March 2016 Publication History

Abstract

The long-term ambition of the Tactile Internet is to enable a democratization of skill, and how it is being delivered globally. An integral part of this is to be able to transmit touch in perceived real-time, which is enabled by suitable robotics and haptics equipment at the edges, along with an unprecedented communications network. The fifth generation (5G) mobile communications systems will underpin this emerging Internet at the wireless edge. This paper presents the most important technology concepts, which lay at the intersection of the larger Tactile Internet and the emerging 5G systems. The paper outlines the key technical requirements and architectural approaches for the Tactile Internet, pertaining to wireless access protocols, radio resource management aspects, next generation core networking capabilities, edge-cloud, and edge-AI capabilities. The paper also highlights the economic impact of the Tactile Internet as well as a major shift in business models for the traditional telecommunications ecosystem.

References

[1]
L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” J. Comput. Netw., vol. 54, no. 15, pp. 2787–2805, 2010.
[2]
ITU, “World telecommunications/ICT indicators database,” Int. Telecommun. Union, Tech. Rep., Dec. 2014.
[3]
ITU-T, “The tactile internet,” ITU-T technology watch report [Online]. Available: https://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000230001PDFE.pdf
[4]
G. Fettweis. The Opportunities of the Tactile Internet—A Challenge For Future Electronics [Online]. Available: http://www.lis.ei.tum.de/fileadmin/w00bdv/www/fpl2014/fettweis.pdf
[5]
E. Dahlman et al., “5G wireless access: Requirements and realization,” IEEE Commun. Mag., vol. 52, no. 12, pp. 42–45, Dec. 2014.
[6]
P. Popovski et al., “Scenarios, requirements and KPIs for 5G mobile and wireless system—deliverable 1.1,” ICT-317669 METIS Project, Apr. 2013.
[7]
Z. Roth et al., “Vision and architecture supporting wireless GBit/sec/km2 capacity density deployments,” in Proc. Future Netw. Mobile Summit, Jun. 2010, pp. 1–7.
[8]
[9]
P. Marsch et al., “5G radio access network design—A brief overview on the 5G-PPP project METIS-II,” in Proc. Eur. Conf. Netw. Commun. (EUCNC), Paris, France, Jun./Jul. 2015.
[10]
A. Gupta and R. Jha, “A survey of 5G network: Architecture and emerging technologies,” IEEE Access, vol. 3, pp. 1206–1232, 2015.
[11]
M. Weiner et al., “Design of a low-latency, high-reliability wireless communication system for control applications,” in Proc. IEEE Int. Conf. Comm. (ICC), Sydney, Australia, Jun. 2014, pp. 3835–3841.
[12]
N. Nikaein and S. Krea, “Latency for real-time machine-to-machine communication in LTE-based system architecture,” in Proc. 11th Eur. Wireless Conf. Sustain. Wireless Technol. (Eur. Wireless), Vienna, Austria, Apr. 2011, pp. 1–6.
[13]
Sercos. (2014). SERCOS News, The Automation Bus Magazine [Online]. Available: http://www.sercos.com/literature/pdf/sercos news 0114 en.pdf
[14]
Z. Lin and S. Pearson, “An inside look at industrial ethernet communication protocols,” Texas Instruments, White Paper, Nov. 2013.
[15]
A. Varghese and D. Tandur, “Wireless requirements and challenges in industry 4.0,” in Proc. Int. Conf. Comtemporary Comput. Informat., Nov. 2015, pp. 634–638.
[16]
J. Arata et al., “A remote surgery experiment between Japan and Thailand over internet using a low latency CODEC system,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Apr. 2007, pp. 953–959.
[17]
A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, “Realizing the tactile internet: Haptic communications over next generation 5G cellular networks,” IEEE Wireless Commun., 2015. [Online]. Available: http://arxiv.org/abs/1510.02826
[18]
M. Dohler, “Machine-to-Machine in smart cities & smart grids: Vision, technologies & applications,” Keynote at WiFlex, Sep. 2013 [Online]. Available: http://bit.ly/1B4rLpY
[19]
Z. Shi, H. Zou, M. Rank, L. Chen, S. Hirche, and H. J. Mueller, “Effects of packet loss and latency on temporal discrimination of visual-haptic events,” IEEE Trans. Haptics, vol. 3, no. 1, pp. 28–36, Jan./Mar. 2009.
[20]
M. Di Luca, T.-K. Machulla, and M. O. Ernst, “Recalibration of multisensory simultaneity: Crossmodal transfer coincides with a change in perceptual latency,” J. Vis., vol. 9, no. 12, pp. 1–16, 2009.
[21]
K. M. Stanney, R. S. Kennedy, and K. Kingdon, Virtual Environment Usage Protocols. Boca Raton, FL, USA: CRC Press, 2002.
[22]
A. Osseiran et al., “The foundation of the mobile and wireless communications system for 2020 and beyond challenges, enablers and technology solutions,” in Proc. IEEE Veh. Technol. Conf. (VTC Spring’15), Jun. 2013, pp. 1–5.
[23]
ITU-T Telecommunication Standardization Sector of ITU, “Series E: Overall Network Operation, Telephone Service, Service Operation and Human Factors,” E.800, Sep. 2008.
[24]
O. N. C. Yilmaz, Y.-P. E. Wang, N. A. Johansson, N. Brahmi, S. A. Ashraf, and J. Sachs, “Analysis of ultra-reliable and low-latency 5G communication for a factory automation use case,” in Proc. IEEE Int. Conf. Commun. (ICC), London, U.K., Jun. 2015.
[25]
H. D. Schotten, R. Sattiraju, D. Gozalvez-Serrano, R. Zhe, and P. Fertl, “Availability indication as key enabler for ultra-reliable communication in 5G,” in Proc. Eur. Conf. Netw. Commun. (EuCNC), Jun. 2014, pp. 1–5.
[26]
D. Ohmann, M. Simsek, and G. Fettweis, “Achieving high availability in wireless networks by an optimal number of Rayleigh-fading links,” in Proc. IEEE Globecom Workshops, Dec. 2014, pp. 1402–1407.
[27]
R. Chaudhari, C. Schuwerk, M. Danaei, and E. Steinbach, “Perceptual and bitrate-scalable coding of haptic surface texture signals,” IEEE J. Sel. Topics Signal Process. (JSTSP), vol. 9, no. 3, pp. 462–473, Apr. 2015.
[28]
E. Steinbach et al., “Haptic Communications,” Proc. IEEE, vol. 100, no. 4, pp. 937–956, Apr. 2012.
[29]
M. O. Ernst and M. S. Banks, “Humans integrate visual and haptic information in a statistically optimal fashion,” Nature, vol. 415, no. 6870, pp. 429–423, Jan. 2002.
[30]
Ericsson, “5G Systems,” White Paper, Jan. 2015 [Online]. Available: http://www.ericsson.com/res/docs/whitepapers/what-is-a-5g-system.pdf
[31]
B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization: Challenges and opportunities for innovations,” IEEE Commun. Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.
[32]
B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A survey of software-defined networking: Past, present, and future of programmable networks,” IEEE Commun. Surveys Tuts., vol. 16, no. 3, pp. 1617–1634, Third Quart. 2014.
[33]
M. Arslan, K. Sundaresan, and S. Rangarajan, “Software-defined networking in cellular radio access networks: Potential and challenges,” IEEE Commun. Mag., vol. 53, no. 1, pp. 150–156, Jan. 2015.
[34]
G. P. Fettweis, W. Lehner, and W. Nagel, “Pathways to servers of the future: Highly adaptive energy efficient computing (HAEC),” in Proc. DATE Conf., 2013, pp. 1161–1166.
[35]
HAEC. (2015). SFB 912: Highly Adaptive Energy-Efficient Computing [Online]. Available: http://tu-dresden.de/sfb912
[36]
J. Bingham, “Multicarrier modulation for data transmission: An idea whose time has come,” IEEE Commun. Mag., vol. 28, no. 5, pp. 5–14, May 2009.
[37]
M. Mirahmadi, A. Al-Dweik, and A. Shami, “BER reduction of OFDM based broadband communication systems over multipath channels with impulsive noise,” IEEE Trans. Commun., vol. 61, no. 11, pp. 4602–4615, Nov. 2013.
[38]
N. A. Johansson, Y.-P. E. Wang, E. Eriksson, and M. Hessler, “Radio access for ultra-reliable and low-latency 5G communications,” in Proc. IEEE Int. Conf. Commun. (ICC), London, U.K., Jun. 2015, pp. 1184–1189.
[39]
J. Van De Beek and F. Berggren, “Out-of-Band Power Suppression in OFDM,” IEEE Commun. Lett., vol. 12, no. 9, pp. 609–611, Sep. 2008.
[40]
E. Hossain, Dynamic Spectrum Access and Management in Cognitive Radio Networks. Cambridge, U.K.: Cambridge Univ. Press, 2009.
[41]
B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92–112, May 2011.
[42]
V. Vakilian, T. Wild, F. Schaich, S. ten Brink, and J.-F. Frigon, “Universal-filtered multi-carrier ttechnique for wireless systems beyond LTE,” in Proc. IEEE Globecom Workshop, Dec. 2013, pp. 223–228.
[43]
R. Ayadi, M. Siala, and I. Kammoun, “Transmit/receive pulse-shaping design in BDFM systems over time-frequency dispersive AWGN channel,” in Proc. IEEE Int. Conf. Syst. Process Control (ICSPC), Nov. 2007, pp. 772–775.
[44]
G. P. Fettweis, M. Krondorf, and S. Bittner, “GFDM—Generalized frequency division multiplexing,” in Proc. 69th IEEE Veh. Technol. Conf. (VTC Spring’09), Barcelona, Spain, Apr. 2009, pp. 1–4.
[45]
N. Michailow et al., “Generalized frequency division multiplexing for 5th generation cellular networks,” IEEE Trans. Commun., vol. 62, no. 9, pp. 3045–3061, Sep. 2014.
[46]
M. Nekovee, “Quantifying performance requirements of vehicle-to-vehicle communication protocols for rear-end collision avoidance,” in Proc. IEEE Veh. Technol. Conf. (VTC Spring’09), Barcelona, Spain, Apr. 2009, pp. 1–5.
[47]
I. Bravo, M. Mazo, J. Lazaro, P. Jimenez, A. Gardel, and M. Marron, “Novel HW architecture based on FPGAs oriented to solve the eigen problem,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 12, pp. 1722–1725, Dec. 2008.
[48]
N. ul Hassan, M. Lentmaier, and G. P. Fettweis, “Comparison of LDPC block and LDPC convolutional codes based on their decoding latency,” in Proc. Int. Symp. Turbo Codes Iterative Inf. Process. (ISTC), Aug. 2012, pp. 225–229.
[49]
T. Hehn and J. Huber, “LDPC codes and convolutional codes with equal structural delay: A comparison,” IEEE Trans. Commun., vol. 57, no. 6, pp. 1683–1692, Jun. 2009.
[50]
J. Sachs, P. Popovski, A. Höglund, D. Gozalvez-Serrano, and P. Fertl, Machine-Type Communications. Cambridge, U.K.: Cambridge Univ. Press, ISBN: 9781107130098, 2016, to be published.
[51]
I. Da Silva et al., “Tight integration of new 5G air interface and LTE to fulfill 5G requirements,” in Proc. IEEE Veh. Technol. Conf. (VTC Spring’15), May 2015, pp. 1–5.
[52]
I. Da Silva, G. Mildh, and M. Gunnar, J. L. Pradas, “Towards an efficient sleeping for 5G devices,” in Proc. IEEE Vehic. Technol. Conf. (VTC Spring’15), May. 2015.
[53]
M. Degermark, “Requirements for robust IP/UDP/RTP header compression,” Internet Engineering Task Force, RFC 3096, Jul. 2001.
[54]
T. Koren, “Enhanced compressed RTP (CRTP) for links with high delay, packet loss and reordering,” Internet Engineering Task Force, RFC 3545, Jul. 2003.
[55]
B. P. Rimal, C. Eunmi, and I. Lumb, “A taxonomy and survey of cloud computing systems,” 2009. [Online]. Available: http://arxiv.org/abs/1007.0066
[56]
Q. Duan, Y. Yan, and A. V. Vasilakos, “A survey on service-oriented network virtualization toward convergence of networking and cloud computing,” IEEE Trans. Netw. Serv. Manage., vol. 9, no. 4, pp. 373–392, Dec. 2012.
[57]
C. Saravanakumar and C. Arun, “Survey on interoperability, security, trust, privacy standardization of cloud computing,” in Proc. Int. Conf. Contemp. Comput. Informat. (IC3I’14), Nov. 2014, pp. 977–982.
[58]
M. Dohler and G. P. Fettweis, “The Tactile Internet—IoT, 5G, and cloud on steroids,” Telefonica Blog, Oct. 2014.
[59]
M. Satyanarayanan, Z. Chen, H. Kiryong, H. Wenlu, W. Richter, and P. Pillai, “Cloudlets: At the Leading Edge of Mobile-Cloud Convergence,” in Proc. 6th Int. Conf. Mobile Cloud Comput. Appl. Serv. (MobiCASE), Nov. 2014, pp. 1–9.
[60]
T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Leveraging cloudlets for immersive collaborative applications,” IEEE Pervasive Comput., vol. 12, no. 4, pp. 30–38, Oct./Dec. 2013.
[61]
S. Bohez, J. De Turck, T. Verbelen, P. Simoens, and B. Dhoedt, “Mobile, Collaborative augmented reality using cloudlets,” in Proc. Int. Conf. MOBILe Wireless MiddleWARE Oper. Syst. Appl. (Mobilware), Nov. 2013, pp. 45–54.
[62]
G. Lewis, S. Echeverria, S. Simanta, B. Bradshaw, and J. Root, “Tactical cloudlets: Moving cloud computing to the edge,” in Proc. IEEE Mil. Commun. Conf. (MILCOM), Oct. 2014, pp. 1440–1446.
[63]
M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for VM-based cloudlets in mobile computing,” IEEE Pervasive Comput., vol. 8, no. 4, pp. 14–23, Oct. 2009.
[64]
M. Ryden, K. Oh, A. Chandra, and J. Weissman, “Nebula: Distributed edge cloud for data-intensive computing,” in Proc. Int. Conf. Collab. Technol. Syst. (CTS), May 2014, pp. 491–492.
[65]
U. Drolia et al., “The case for mobile edge-clouds,” in Proc. IEEE 10th Int. Conf. Ubiq. Intell. Comput./Auton. Trusted Comput. (UIC/ATC), Dec. 2013, pp. 209–215.
[66]
Q. Li, H. Niu, A. Papathanassiou, and G. Wu, “Edge cloud and underlay networks: Empowering 5G cell-less wireless architecture,” in Proc. 20th Eur. Conf. Wireless, May 2014, pp. 1–6.
[67]
O. Galinina, A. Pyattaev, S. Andreevy, M. Dohler, and Y. Koucheryavy, “5G multi-RAT LTE-WiFi ultra-dense small cells: Performance dynamics, architecture, and trends,” IEEE J. Sel. Areas Commun., vol. 33, no. 6, pp. 1224–1240, May 2015.
[68]
S. Andreevy et al., “Understanding IoT connectivity landscape—A contemporary M2M radio technology roadmap,” IEEE Commun. Mag., vol. 53, no. 9, pp. 32–40, Sept. 2015.
[69]
M. Condoluci, M. Dohler, G. Araniti, A. Molinaro, and J. Sachs, “Enhanced radio access and data transmission procedures facilitating industry-compliant machine-type communications over LTE-based 5G networks,” IEEE Wireless Commun. Mag., to be published.
[70]
M. Condoluci, M. Dohler, G. Araniti, A. Molinaro, and K. Zheng, “Towards 5G DenseNets: Architectural advances for effective machine-type communications over femtocells,” IEEE Commun. Mag., vol. 53, no. 1, pp. 134–141, Jan. 2015.
[71]
K. Zheng, S. Ouy, J. Alonso-Zarate, M. Dohler, F. Liu, and H. Zhu, “Challenges of massive access in highly-dense LTE-advanced networks with machine-to-machine communications,” IEEE Commun. Mag., vol. 21, no. 3, pp. 12–18, Jun. 2014.
[72]
K. Zheng, L. Zhao, J. Mei, M. Dohler, W. Xiangy, and Y. Peng, “10Gbps-HetSNets with millimeter-wave communications: Access and networking challenges and protocols,” IEEE Commun. Mag., to be published.
[73]
H. Y. Lateef, A. Imran, M. A. Imran, L. Giupponi, and M. Dohler, “LTE-advanced self-organising network conflicts and coordination algorithm,” IEEE Wireless Commun. Mag., vol. 22, no. 3, pp. 108–117, Jun. 2015.
[74]
E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of proactive caching in 5g wireless networks,” IEEE Commun. Mag., vol. 52, no. 8, pp. 82–89, Aug. 2014.
[75]
F. Sardis, G. Mapp, J. Loo, and M. Aiash, “Dynamic edge-caching for mobile users: Minimising inter-AS traffic by moving cloud services and VMS,” in Proc. 28th Int. Conf. Adv. Inf. Netw. Appl. Workshops (WAINA), May 2014, pp. 144–149.
[76]
Y.-T. Yu, F. Bronzino, R. Fan, C. Westphal, and M. Gerla, “Congestion-aware edge caching for adaptive video streaming in information-centric networks,” in Proc. 12th Annu. IEEE Consum. Commun. Netw. Conf. (CCNC), Jan. 2015, pp. 588–596.
[77]
Y. Li, “Coordinated edge caching with request aggregation in radio access network,” in Proc. 11th Annu. IEEE Consum. Commun. Netw. Conf. (CCNC), Jan. 2014.
[78]
L. Ramaswamy, L. Liu, and A. Iyengar, “Scalable delivery of dynamic content using a cooperative edge cache grid,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 5, pp. 614–630, May 2007.
[79]
L. Ramaswamy, L. Liu, and A. Iyengar, “Cache clouds: Cooperative caching of dynamic documents in edge networks,” in Proc. 25th IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS’05), Jun. 2005, pp. 229–238.
[80]
N. Sakr, J. Zhou, N. D. Georganas, J. Zhao, and E. Petriu, “Network traffic reduction in six degree-of-freedom haptic, telementoring systems,” in Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC’09), Oct. 2009, pp. 2451–2456.
[81]
N. Sakr, N. D. Georganas, and J. Zhao, “Exploring human perception-based data reduction for haptic communication in 6-DOF telepresence systems,” in Proc. IEEE Int. Symp. Haptic Audio-Visual Environ. Games (HAVE), Oct. 2010, pp. 1–6.
[82]
N. Sakr, N. Georganas, J. Zhao, and X. Shen, “Motion and force prediction in haptic media,” in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2007, pp. 2242–2245.
[83]
X. Xu, J. Kammerl, R. Chaudhari, and E. Steinbach, “Hybrid signal-based and geometry-based prediction for haptic data reduction,” in Proc. IEEE Int. Workshop Haptic Audio Visual Environ. Games (HAVE), Oct. 2011, pp. 68–73.
[84]
X. Xu, B. Cizmeci, A. Al-Nuaimi, and E. Steinbach, “Point cloud-based model-mediated teleoperation with dynamic and perception-based model updating,” IEEE Trans. Instrum. Meas., vol. 63, no. 11, pp. 2558–2569, Nov. 2014.
[85]
F. Brandi and E. Steinbach, “Prediction techniques for haptic communication and their vulnerability to packet losses,” in Proc. IEEE Int. Symp. Haptic Audio Visual Environ. Games (HAVE), Oct. 2013, pp. 63–68.
[86]
F. Guo, C. Zhang, and Y. He, “Haptic data compression based on a linear prediction model and quadratic curve reconstruction,” J. Softw., vol. 9, no. 11, pp. 2796–2803, 2014.
[87]
Worldbank. (2014). Gross Domestic Product [Online]. Available: http://databank.worldbank.org/data/download/GDP.pdf

Cited By

View all
  • (2024)Databases in Edge and Fog Environments: A SurveyACM Computing Surveys10.1145/366600156:11(1-40)Online publication date: 8-Jul-2024
  • (2024)Joint URLLC Traffic Scheduling and Resource Allocation for Semantic Communication SystemsIEEE Transactions on Wireless Communications10.1109/TWC.2023.333923923:7(7278-7290)Online publication date: 1-Jul-2024
  • (2024)Spectrally-Efficient Modulation on Conjugate-Reciprocal Zeros (SE-MOCZ) for Non-Coherent Short Packet CommunicationsIEEE Transactions on Wireless Communications10.1109/TWC.2023.329661023:3(2226-2240)Online publication date: 1-Mar-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Journal on Selected Areas in Communications
IEEE Journal on Selected Areas in Communications  Volume 34, Issue 3
March 2016
232 pages

Publisher

IEEE Press

Publication History

Published: 01 March 2016

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Databases in Edge and Fog Environments: A SurveyACM Computing Surveys10.1145/366600156:11(1-40)Online publication date: 8-Jul-2024
  • (2024)Joint URLLC Traffic Scheduling and Resource Allocation for Semantic Communication SystemsIEEE Transactions on Wireless Communications10.1109/TWC.2023.333923923:7(7278-7290)Online publication date: 1-Jul-2024
  • (2024)Spectrally-Efficient Modulation on Conjugate-Reciprocal Zeros (SE-MOCZ) for Non-Coherent Short Packet CommunicationsIEEE Transactions on Wireless Communications10.1109/TWC.2023.329661023:3(2226-2240)Online publication date: 1-Mar-2024
  • (2024)How to Improve Immersive Experience?IEEE Transactions on Multimedia10.1109/TMM.2022.319966626(8691-8703)Online publication date: 1-Jan-2024
  • (2024)Optimized provisioning technique of future services with different QoS requirements in multi-access edge computingComputer Communications10.1016/j.comcom.2024.05.023224:C(42-59)Online publication date: 1-Aug-2024
  • (2024)A Review on FoG Computing in 5G Wireless Technologies: Research Challenges, Issues and SolutionsWireless Personal Communications: An International Journal10.1007/s11277-024-11061-y134:4(2455-2484)Online publication date: 1-Feb-2024
  • (2023)Symbol-Synchronous Buses: Deterministic, Low-Latency Wireless Mesh Networking with LEDsCommunications of the ACM10.1145/358376266:4(93-101)Online publication date: 23-Mar-2023
  • (2023)PEACH: Proactive and Environment-Aware Channel State Information Prediction with Depth ImagesProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/35794507:1(1-27)Online publication date: 2-Mar-2023
  • (2023)Online Learning for Network Resource AllocationACM SIGMETRICS Performance Evaluation Review10.1145/3579342.357934850:3(20-23)Online publication date: 5-Jan-2023
  • (2023)Unsupervised Learning for Ultra-Reliable and Low-Latency Communications With Practical Channel EstimationIEEE Transactions on Wireless Communications10.1109/TWC.2023.330990023:4(3633-3647)Online publication date: 5-Sep-2023
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media