Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Mapping leaf area index over a mixed natural forest area in the flooding season using ground-based measurements and Landsat TM imagery

Published: 01 October 2012 Publication History

Abstract

Leaf area index LAI is an important structural parameter in terrestrial ecosystem modelling and management. Therefore, it is necessary to conduct an investigation on using moderate-resolution satellite imagery to estimate and map LAI in mixed natural forests in southeastern USA. In this study, along with ground-measured LAI and Landsat TM imagery, the potential of Landsat 5 TM data for estimating LAI in a mixed natural forest ecosystem in southeastern USA was investigated and a modelling method for mapping LAI in a flooding season was developed. To do so, first, 70 ground-based LAI measurements were collected on 8 April 2008 and again on 1 August 2008 and 30 July 2009; TM data were calibrated to ground surface reflectance. Then univariate correlation and multivariate regression analyses were conducted between the LAI measurement and 13 spectral variables, including seven spectral vegetation indices VIs and six single TM bands. Finally, April 08 and August 08 LAI maps were made by using TM image data, a multivariate regression model and relationships between April 08 and August 08 LAI measurements. The experimental results indicate that Landsat TM imagery could be used for mapping LAI in a mixed natural forest ecosystem in southeastern USA. Furthermore, TM4 and TM3 single bands <italic>R</italic>2 > 0.45 and the soil adjusted vegetation index, transformed soil adjusted vegetation index and non-linear vegetation index <italic>R</italic>2 > 0.64 have produced the highest and second highest correlation with ground-measured LAI. A better modelling result <italic>R</italic>2 = 0.78, accuracy = 73%, root mean square error RMSE = 0.66 of the 10-predictor multiple regression model was obtained for estimating and mapping April 08 LAI from TM data. With a linear model and a power model, August 08 LAI maps were successfully produced from the April 08 LAI map accuracy = 79%, RMSE = 0.57, although only 58–65% of total variance could be accounted for by the linear and non-linear models.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Remote Sensing
International Journal of Remote Sensing  Volume 33, Issue 20
20 October 2012
344 pages
ISSN:0143-1161
EISSN:1366-5901
Issue’s Table of Contents

Publisher

Taylor & Francis, Inc.

United States

Publication History

Published: 01 October 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media