Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Performance analysis of the odd–even uniform interleaver for turbo codes

Published: 01 October 2019 Publication History

Abstract

Interleaver design has been an intense research area since the invention of turbo codes, both from theoretical and technological perspectives, still receiving the attention of engineers. This work is a theoretical treatment on the subject of interleaver design, bringing into focus the odd‐even constraint. Odd‐even interleavers constrain information symbols at odd (even) positions to remain at odd (even) positions after interleaving. Having been adopted in a range of operational communication standards as parts of turbo codes on the one hand, and having raised scepticism about their gain in the literature of turbo trellis‐coded modulation on the other hand, these interleavers have motivated the present article. Concretely, the authors perform a bit‐error analysis of turbo‐code ensembles generated by the odd–even uniform interleaver, following the union‐bound approach by Benedetto et al. for the analysis of the uniform interleaver. They find that the odd–even constraint does not affect the interleaver gain of uniform‐interleaver ensembles; rather, it triggers a redistribution of multiplicities that leads to slightly worse performance mainly in the error‐floor region. The authors' findings are corroborated by bit‐error‐rate simulations.

References

[1]
Shannon C.E.: ‘A mathematical theory of communication’, Bell Syst. Tech. J., 1948, 27, pp. 379–423, 623–656
[2]
Berrou C., Glavieux A., Thitimajshima P.: ‘Near Shannon limit error‐correcting coding and decoding: turbo‐codes’. Proc. Int. Conf. Communication, Geneva, Switzerland, May 1993, pp. 1064–1070
[3]
Benedetto S., Montorsi G.: ‘Unveiling turbo codes: some results on parallel concatenated coding schemes’, IEEE Trans. Inf. Theory, 1996, 42, (2), pp. 409–428
[4]
Richardson T., Urbanke R.: ‘Thresholds for turbo codes’. Proc. Int. Symp. Inf. Theory, Sorrento, Italy, June 2000, pp. 317
[5]
Mohammadi A.H.S., Zhuang W.: ‘Variance of the turbo code performance bound over the interleavers’, IEEE Trans. Inf. Theory, 2002, 48, (7), pp. 2078–2086
[6]
Divsalar D., Jin H., McEliece R.J.: ‘Coding theorems for ‘turbo‐like’ codes’. Proc. 36th Annual Allerton Conf. on Communication, Control, and Computing, Monticello, Illinois, USA, September 1998, pp. 201–210
[7]
Benedetto S., Divsalar D., Montorsi G. et al.: ‘Serial concatenation of interleaved codes: performance analysis, design, and iterative decoding’, IEEE Trans. Inf. Theory, 1998, 44, (3), pp. 909–926
[8]
Jin H., McEliece R.J.: ‘Coding theorems for turbo code ensembles’, IEEE Trans. Inf. Theory, 2002, 48, (6), pp. 1451–1461
[9]
ten Brink S.: ‘Convergence behavior of iteratively decoded parallel concatenated codes’, IEEE Trans. Commun., 2001, 49, (10), pp. 1727–1737
[10]
Duman T.M., Salehi M.: ‘New performance bounds for turbo codes’, IEEE Trans. Commun., 1998, 46, (6), pp. 717–723
[11]
Sason I., Shamai (Shitz) S.: ‘Improved upper bounds on the ML decoding error probability of parallel and serial concatenated turbo codes via their ensemble distance spectrum’, IEEE Trans. Inf. Theory, 2000, 46, (1), pp. 24–47
[12]
Breiling M.: ‘A logarithmic upper bound on the minimum distance of turbo codes’, IEEE Trans. Inf. Theory, 2004, 50, (8), pp. 1692–1710
[13]
Perotti A., Benedetto S.: ‘An upper bound on the minimum distance of serially concatenated convolutional codes’, IEEE Trans. Inf. Theory, 2006, 52, (12), pp. 5501–5509
[14]
i Fàbregas A.G., Caire G.: ‘Coded modulation in the block‐fading channel: coding theorems and code construction’, IEEE Trans. Inf. Theory, 2006, 52, (1), pp. 91–114
[15]
3GPP TS 36.212: ‘LTE; Evolved Universal Terrestrial Radio Access (E‐UTRA); Multiplexing and channel coding’. 2017, v.14.2.0
[16]
IEEE 802.16‐2017: ‘Standard for Air Interface for Broadband Wireless Access Systems’, 2017
[17]
ETSI EN 301 545‐2: ‘Digital Video Broadcasting (DVB); Second Generation DVB Interactive Satellite System (DVB‐RCS2); Part 2: Lower Layers for Satellite standard’, 2014, v.1.2.1
[18]
Maunder R.G.: ‘A fully‐parallel turbo decoding algorithm’, IEEE Trans. Commun., 2015, 63, (8), pp. 2762–2775
[19]
Xiang L., Brejza M.F., Maunder R.G. et al.: ‘Arbitrarily parallel turbo decoding for ultra‐reliable low latency communication in 3GPP LTE’, IEEE J. Sel. Areas Commun., 2019, 37, (4), pp. 826–838
[20]
Weithoffer S., Nour C.A., Wehn N. et al.: 25 years of turbo codes: from Mb/s to beyond 100 Gb/s'. Proc. 10th Int. Symp. Turbo Codes, Hong Kong, December 2018, pp. 1–6
[21]
Zhang K., Huang X., Wang Z.: ‘High‐throughput layered decoder implementation for quasi‐cyclic LDPC codes’, IEEE J. Sel. Areas Commun., 2009, 27, (6), pp. 985–994
[22]
Dizdar O., Arikan E.: ‘A high‐throughput energy‐efficient implementation of successive cancellation decoder for polar codes using combinational logic’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2016, 63, (3), pp. 436–447
[23]
Declerq D., Fossorier M., Biglieri E. (Eds.): ‘Channel coding: theory, algorithms, and applications’ (Academic Press, Oxford, UK 2014, 1st edn.)
[24]
Gruber T., Cammerer S., Hoydis J. et al.: ‘On deep learning‐based channel decoding’. Proc. Annual Conf. on Information Sciences and Systems, Baltimore, MD, USA, March 2017, pp. 1–6
[25]
Nachmani E., Marciano E., Lugosch L. et al.: ‘Deep learning methods for improved decoding of linear codes’, IEEE J. Sel. Top. Signal Process., 2018, 12, (1), pp. 119–131
[26]
Robertson P., Woerz T.: ‘Bandwidth‐efficient turbo trellis‐coded modulation using punctured component codes’, IEEE J. Sel. Areas Commun., 1998, 16, (2), pp. 206–218
[27]
Ogiwara H., Yano M.: ‘Improvement of turbo trellis‐coded modulation system’, IEICE Trans. Funda., 1998, E81‐A, (10), pp. 2040–2046
[28]
Fragouli C., Wesel R.D.: ‘Turbo‐encoder design for symbol‐interleaved parallel concatenated trellis‐coded modulation’, IEEE Trans. Commun., 2001, 49, (3), pp. 425–435
[29]
Wu Y.J., Ogiwara H.: ‘Symbol‐interleaver design for turbo trellis‐coded modulation’, IEEE Commun. Lett., 2004, 8, (10), pp. 632–634
[30]
Sun H., Ng S.X., Dong C. et al.: ‘Decode‐and‐forward cooperation‐aided triple‐layer turbo‐trellis‐coded hierarchical modulation’, IEEE Trans. Commun., 2015, 63, (4), pp. 1136–1148
[31]
Matsumine T., Ochiai H.: ‘Capacity‐approaching non‐binary turbo codes: A hybrid design based on EXIT charts and union bounds’, IEEE Access, 2018, 6, pp. 70952–70963
[32]
Hara T., Ishibashi K., Ng S.X. et al.: ‘Low‐complexity generator polynomial search for turbo trellis‐coded spatial modulation using symbol‐based EXIT charts’. Proc. 10th Int. Symp. Turbo Codes, Hong Kong, December 2018, pp. 1–5
[33]
Ogiwara H., Mizutome A., Koike K.: ‘Performance evaluation of parallel concatenated trellis‐coded modulation’, IEICE Trans. Fundam., 2001, E84‐A, (10), pp. 2410–2417
[34]
Ng S.X., Alamri O.R., Li Y. et al.: ‘Near‐capacity turbo trellis coded modulation design based on EXIT charts and union bounds’, IEEE Trans. Commun., 2008, 56, (12), pp. 2030–2039
[35]
Arkoudogiannis K.S., Dimakis C.E., Koutsouvelis K.V.: ‘Turbo trellis‐coded modulation: A distance spectrum view at the odd‐even constraint’. Proc. 9th Int. Symp. Turbo Codes, Brest, France, September 2016, pp. 76–80
[36]
Barbulescu A.S., Pietrobon S.S.: ‘Interleaver design for turbo codes’, IET Electron. Lett., 1994, 30, (25), pp. 2107–2108
[37]
Wang G., Shen H., Sun Y. et al.: ‘Parallel interleaver design for a high throughput HSPA+/LTE multi‐standard turbo decoder’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2014, 61, (5), pp. 1376–1389
[38]
Nieminen E.: ‘A contention‐free parallel access by butterfly networks for turbo interleavers’, IEEE Trans. Inf. Theory, 2014, 60, (1), pp. 237–251
[39]
Garzón‐Bohórquez R., Nour C.A., Douillard C.: ‘Protograph‐based interleavers for punctured turbo codes’, IEEE Trans. Commun., 2018, 66, (5), pp. 1833–1844
[40]
Ryan W., Lin S.: ‘Channel codes: classical and modern’ (Cambridge University Press, Cambridge, UK 2009, 1st edn.)
[41]
Lin S., Costello D.J. Jr.: ‘Error control coding: fundamentals and applications’ (Pearson, Prentice‐Hall, USA, 2004, 2nd edn.)
[42]
Perez L.C., Seghers J., Costello D.J. et al.: ‘A distance spectrum interpretation of turbo codes’, IEEE Trans. Inf. Theory, 1996, 42, (6), pp. 1698–1709
[43]
Forney G.D. Jr., Ungerboeck G.: ‘Modulation and coding for linear Gaussian channels’, IEEE Trans. Inf. Theory, 1998, 44, (6), pp. 2384–2415
[44]
Chatzigeorgiou I., Rodrigues M.R.D., Wassell I.J. et al.: ‘Analysis and design of punctured rate‐1/2 turbo codes exhibiting low error floors’, IEEE J. Sel. Areas Commun., 2009, 27, (6), pp. 944–953
[45]
Dolinar S., Divsalar D.: ‘Weight distributions for turbo codes using random and nonrandom permutations’. TDA Progress Rep. 42‐122, 1995, pp. 56–65

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IET Communications
IET Communications  Volume 13, Issue 16
October 2019
222 pages
EISSN:1751-8636
DOI:10.1049/cmu2.v13.16
Issue’s Table of Contents

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 01 October 2019

Author Tags

  1. trellis coded modulation
  2. error statistics
  3. error analysis
  4. turbo codes
  5. interleaved codes

Author Tags

  1. turbo trellis‐coded modulation
  2. bit‐error analysis
  3. turbo‐code ensembles
  4. interleaver gain
  5. uniform‐interleaver ensembles
  6. performance analysis
  7. turbo codes
  8. interleaver design
  9. theoretical treatment
  10. odd‐even constraint
  11. interleavers constrain information symbols
  12. odd‐even uniform interleaver

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media