Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Lightweight authentication scheme for smart grid using Merkle hash tree and lossless compression hybrid method

Published: 24 October 2018 Publication History

Abstract

In order to make efficient use of the benefits of smart grid, meeting the security objectives of the network seems an essential requirement. Implementation of authentication protocols on the communication among the nodes of the network plays an important role in achieving the security objectives. In this study, a lightweight authentication scheme is presented for the connection between the neighbourhood area network gateway and the control centre in the smart grid. In the proposed scheme, a lossless compression algorithm, as well as Merkel hash tree, is used to compress the data prior to cryptography. Due to the fact that large amounts of data are compressed in the compression process and then Merkel tree is applied on them, confidentiality of the data against cryptanalysis attacks has increased considerably. Security analysis of the proposed scheme indicates that the objectives of confidentiality, data integrity, and availability have been fully achieved, and the process of authentication and counteraction to the replay attack has been successfully applied. In addition, making use of the compression algorithm, as well as one time pad cryptography system, tends to reduce the computational, communication, and storage costs of the proposed scheme compared to previous scheme.

References

[1]
Li H.: ‘Enabling Secure and Privacy Preserving Communications in Smart Grids’ (Springer International Publishing, 2014)
[2]
Fadlullah Z., Fouda M., Kato N.et al.: ‘Toward intelligent machine‐to‐machine communications in smart grid’, IEEE Commun. Mag., 2011, 49, (4), pp. 60–65
[3]
Yang Z., Yu S., Lou W.et al.: ‘P2: privacy‐preserving communication and precise reward architecture for V2G networks in smart grid’, IEEE Trans. Smart Grid, 2011, 2, (4), pp. 697–706
[4]
Yuan Y., Li Z., Ren K.: ‘Modeling load redistribution attacks in power system’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 382–390
[5]
Fouda M., Fadlullah Z. M., Kato N.et al.: ‘Towards a light‐weight message authentication mechanism tailored for smart grid communications’. Proc. IEEE INFOCOM′11‐SCNC, Shanghai, China, Apr 2011
[6]
Gellings C. W.: ‘The smart grid: enabling energy efficiency and demand response’ (Fairmont Press, Lilburn, GA, 2009)
[7]
Zhang Y., Yu R., Nekovee M.et al.: ‘Cognitive machine‐to‐machine communications: visions and potentials for the smart grid’, IEEE Netw. Mag., 2012, 26, (3), pp. 6–13
[8]
Gharavi H., Ghafurian R.: ‘Smart grid: the electric energy system of the future’, Proc. IEEE, 2011, 99, (6), pp. 917–921
[9]
Fouda M., Fadlullah Z., Kato N.et al.: ‘A lightweight message authentication scheme for smart grid communications’, IEEE Trans. Smart Grid, 2011, 2, (4), pp. 675–685
[10]
Li H., Lu R., Zhou L.et al.: ‘An efficient Merkle‐Tree‐based authentication scheme for smart grid’, IEEE Syst. J., 2014, 8, (2), pp. 655–663
[11]
He D., Wang H., Khan M.K.et al.: ‘Lightweight anonymous key distribution scheme for smart grid using elliptic curve cryptography’, IET Commun., 2016, 10, (14), pp. 1795–1802
[12]
Nordell D.: ‘Terms of protection: the many faces of smart grid security’, IEEE Power Energy Mag., 2012, 10, (1), pp. 18–23
[13]
Li X., Liang X., Lu R.et al.: ‘Securing smart grid: cyber attacks, countermeasures, and challenges’, IEEE Commun. Mag., 2012, 58, (8), pp. 38–45
[14]
McDaniel P., McLaughlin S.: ‘Security and privacy challenges in the smart grid’, IEEE Secur. Priv., 2009, 7, (3), pp. 75–77
[15]
Ericsson G. N.: ‘Cyber security and power system communication essential parts of a smart grid infrastructure’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 1501–1507
[16]
Lu R., Li X., Liang X.et al.: ‘GRS: the green, reliability, and security of emerging machine to machine communications’, IEEE Commun. Mag., 2011, 49, (4), pp. 28–35
[17]
Zhu H., Lin X., Lu R.et al.: ‘SLAB: secure localized authentication and billing scheme for wireless mesh networks’, IEEE Trans. Wireless Commun., 2008, 7, (10), pp. 3858–3868
[18]
‘IEEE p2030 draft guide’, [Online]. Available at: http://grouper.ieee.org/groups/scc21/2030/2030_index.html
[19]
Lin X., Lu R., Ho P. H.et al.: ‘TUA: a novel compromise‐resilient authentication architecture for wireless mesh networks’, IEEE Trans. Wireless Commun., 2008, 7, (4), pp. 1389–1399
[20]
Li Q., Guohong C.: ‘Multicast authentication in the smart grid with one‐time signature’, IEEE Trans. Smart Grid, 2011, 2, (4), pp. 686–696
[21]
Wen H., Wang Y., Zhu X.et al.: ‘Physical layer assist authentication technique for smart meter system’, IET Commun., 2013, 7, (3), pp. 189–197
[22]
Chan A. C. F., Zhou J.: ‘Cyber‐physical device authentication for the smart grid electric vehicle ecosystem’, IEEE J. Sel. Areas Commun., 2014, 32, (7), pp. 1509–1517
[23]
Nicanfar H., Jokar P., Beznosov K.et al.: ‘Efficient authentication and key management mechanisms for smart grid communication’, IEEE Syst. J., 2014, 8, (2), pp. 629–640
[24]
Chim T., Yiu S., Li V.et al.: ‘PRGA: privacy‐preserving recording & gateway‐assisted authentication of power usage information for smart grid’, IEEE Trans. Dependable Secur. Comput., 2015, 12, (1), pp. 85–97
[25]
Abdallah A., Shen X.: ‘A lightweight lattice‐based homomorphic privacy‐preserving data aggregation scheme for smart grid’, IEEE Trans. Smart Grid, 2016, 9, (1), pp. 396–405
[26]
Guo H., Wu Y., Bao F.et al.: ‘UBAPV2G: a unique batch authentication protocol for vehicle‐to‐grid communications’, IEEE Trans. Smart Grid, 2011, 2, (4), pp. 707–714
[27]
Liu H., Ning H., Zhang Y.et al.: ‘Aggregated‐proofs based privacy‐preserving authentication for V2G networks in the smart grid’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 1722–1733
[28]
Liu H., Ning H., Zhang Y.et al.: ‘Battery status‐aware authentication scheme for V2G networks in smart grid’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 99–110
[29]
Abdallah A., Shen X.: ‘Lightweight authentication and privacy‐preserving scheme for V2G connections’, IEEE Trans. Veh. Technol., 2017, 66, (3), pp. 2615–2629
[30]
Vaidya B., Makrakis D., Mouftah H.: ‘Authentication and authorization mechanisms for substation automation in smart grid network’, IEEE Netw., 2013, 27, (1), pp. 5–11
[31]
Saxena N., Choi B.J., Lu R.: ‘Authentication and authorization scheme for various user‐roles and devices in smart grid’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (5), pp. 907–921
[32]
Wessels J.: ‘Applications of BAN‐logic’, (CMG Finance B.V., 2001). [Online]. Available at: win.tue.nl/ipa/archive/springdays2001/banwessels.pdf
[33]
‘Proverif: cryptographic protocol verifier’. [Online]. Available at: http://prosecco.gforge.inria.fr/personal/bblanche/proverif
[34]
Liu Y., Cheng C., Gu T.et al.: ‘A lightweight authenticated communication scheme for smart grid’, IEEE Sens. J., 2016, 16, (3), pp. 836–842
[35]
Merkle R.: ‘Protocols for public key cryptosystems’. Proc. IEEE Symp. Security and Privacy, USA, 1980, pp. 122–134
[36]
Przydatek B., Song D., Perrig A.: ‘SIA: secure information aggregation in sensor networks’. Proc. ACM Conf. Embedded Netw. Sensor Syst, 2003, USA, pp. 255–265
[37]
Chan H., Perrig A., Song D.: ‘Secure hierarchical in‐network aggregation in sensor networks’. Proc. 13th ACM Conf. Comput. Commun. Sec, USA, 2006, pp. 278–287
[38]
Ren K., Lou W., Zeng K.et al.: ‘On broadcast authentication in wireless sensor networks’, IEEE Trans. Wireless Commun., 2007, 6, (11), pp. 4136–4144
[39]
Sayood K.: ‘Introduction to data compression’ (Elsevier, USA, 2012)
[40]
Blelloch E.: ‘Introduction to data compression’. Available at: https://www.cs.cmu.edu/guyb/realworld/compression.pdf, January 2013
[41]
Preneel B., Bosselaers A., Dobbertin H.: ‘The cryptographic hash function RIPEMD‐160’, 1997, 3, (2), pp. 9–14
[42]
Stinson D.: ‘Cryptography: theory and practice’ (CRC Press, Boca Raton, FL, USA, 2006)
[43]
Ferguson N., Schroeppel R., Whiting D.: ‘A simple algebraic representation of Rijndael’, in ‘SAC′01’, (LNCS, Canada, 2001), vol. 2259, pp. 103–111
[44]
Kabalci Y.: ‘A survey on smart metering and smart grid communication’, Renew. Sust. Energy Rev., 2016, 57, pp. 302–318

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IET Communications
IET Communications  Volume 12, Issue 19
December 2018
128 pages
EISSN:1751-8636
DOI:10.1049/cmu2.v12.19
Issue’s Table of Contents

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 24 October 2018

Author Tags

  1. telecommunication security
  2. smart power grids
  3. message authentication
  4. trees (mathematics)
  5. data integrity
  6. cryptography
  7. data compression
  8. program verification
  9. internetworking
  10. cryptographic protocols

Author Tags

  1. lightweight authentication scheme
  2. smart grid
  3. lossless compression hybrid method
  4. security objectives
  5. essential requirement
  6. authentication protocols
  7. neighbourhood area network gateway
  8. lossless compression algorithm
  9. compression process
  10. Merkel tree
  11. security analysis
  12. data integrity
  13. counteraction
  14. previous scheme

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media