Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Optimal sensing interval in cognitive radio networks with imperfect spectrum sensing

Published: 01 January 2016 Publication History

Abstract

Spectrum sensing is performed at the beginning of each time slot in traditional cognitive radio networks, which is unreasonable and needless since the presence or the absence of a primary user (PU) always lasts several time slots. A hidden Markov model is used to describe the imperfect spectrum sensing process over Rayleigh fading channels. On the basis of the sensing results, a hybrid interweave/underlay mode is exploited by the secondary user (SU) to achieve a higher throughput. To solve the tradeoff problem among the average energy consumption for spectrum sensing, the average throughput of SU and the average interference to the PU, an optimisation problem is proposed. The optimal sensing interval to determine when the next spectrum sensing should be performed is obtained by solving the optimisation problem. Numerical results are given to verify the authors’ analysis.

References

[1]
Dohler M.Heath R.Lozano A. et al.: ‘Is the PHY layer dead?’, IEEE Commun. Mag., 2011, 49, (4), pp. 159–165
[2]
FCC : ‘Spectrum policy task force report’, ET Docker 02‐155, November 2002
[3]
Mitola J.Maguire G.Q.: ‘Cognitive radio: making software radios more personal’, IEEE Pers. Commun., 1999, 6, (4), pp. 13–18
[4]
Haykin S.: ‘Cognitive radio: Brain‐empowered wireless communications’, IEEE J. Sel. Areas Commun., 2005, 23, (2), pp. 201–220
[5]
Yucek T.Arslan H.: ‘A survey of spectrum sensing algorithms for cognitive radio applications’, IEEE Commun. Surv. Tutor., 2009, 11, (1), pp. 116–130
[6]
Liu J.Li Z.: ‘Lowering the signal‐to‐noise ratio wall for energy detection using parameter‐induced stochastic resonator’, IET Commun., 2015, 9, (1), pp. 101–107
[7]
Li B.Li X.F.Nallanathan A. et al.: ‘Energy detection based spectrum sensing for cognitive radios over time‐frequency doubly selective fading channels’, IEEE Trans. Signal Process., 2014, 63, (2), pp. 402–417
[8]
López‐Benítez M.Casadevall F.: ‘Improved energy detection spectrum sensing for cognitive radio’, IET Commun., 2012, 6, (8), pp. 785–796
[9]
Gardner W.A.: ‘Exploitation of spectral redundancy in cyclostationary signals’, IEEE Signal Process. Mag., 1991, 8, (2), pp. 14–36
[10]
Zeng Y.Liang Y.C.: ‘Eigenvalue‐based spectrum sensing algorithms for cognitive radio’, IEEE Trans. Commun., 2009, 57, (6), pp. 1784–1793
[11]
Mishra S.M.Sahai A.Brodersen R.W.: ‘Cooperative sensing among cognitive radios’. Proc. IEEE ICC, Istanbul, Turkey, June 2006, pp. 1658–1663
[12]
Quan Z.Cui S.Poor H.V. et al.: ‘Collaborative wideband sensing for cognitive radios’, IEEE Signal Process. Mag., 2008, 25, (6), pp. 60–73
[13]
Chaudhari S.Lunden J.Koivunen V. et al.: ‘Cooperative sensing with imperfect reporting channels: hard decisions or soft decisions?’, IEEE Trans. Signal Process., 2012, 60, (1), pp. 18–28
[14]
Srinivasa S.Jafar S.: ‘Cognitive radios for dynamic spectrum access the throughput potential of cognitive radio: a theoretical perspective’, IEEE Commun. Mag., 2007, 45, (5), pp. 73–79
[15]
Goldsmith A.Jafar S.A.Maric I. et al.: ‘Breaking spectrum gridlock with cognitive radios: an information theoretic perspective’, Proc. IEEE, 2009, 97, (5), pp. 894–914
[16]
Willkomm D.Machiraju S.Bolot J. et al.: ‘Primary user behavior in cellular networks and implications for dynamic spectrum access’, IEEE Commun. Mag., 2009, 47, (3), pp. 88–95
[17]
Xing X.S.Jing T.Li H. et al.: ‘Optimal spectrum sensing interval in cognitive radio networks’, IEEE Trans. Parallel Distrib. Syst., 2013, 25, (9), pp. 2408–2417
[18]
Ghosh C.Cordeiro C.Agrawal D. et al.: ‘Markov chain existence and hidden Markov models in spectrum sensing’, IEEE Pervasive Comput. Commun., 2009, pp. 1–6
[19]
Rabiner L.R.: ‘A tutorial on hidden Markov models and selected applications in speech recognition’, Proc. IEEE, 1989, 77, (2), pp. 257–286
[20]
Treeumnuk D.Popescu D.C.: ‘Using hidden Markov models to evaluate performance of cooperative spectrum sensing’, IET Commun., 2013, 7, (17), pp. 1969–1973
[21]
Nguyen T.Mark B.L.Ephraim Y.: ‘Spectrum sensing using a hidden bivariate Markov model’, IEEE Trans. Wirel. Commun., 2013, 12, (9), pp. 4582–4591
[22]
Chen Z.Hu Z.Qiu R.: ‘Quickest spectrum detection using hidden Markov model for cognitive radio’. Proc. IEEE Military Communications Conf. (MILCOM), Boston, USA, October 2009, pp. 1–7
[23]
Stamp M.: ‘A Revealing Introduction to Hidden Markov Models’, 2012, Available at http://www.cs.sjsu.edu/%7Estamp/RUA/HMM.pdf
[24]
Digham F.F.Alouini M.‐S.Simon M.K.: ‘On the energy detection of unknown signals over fading channels’. Proc. IEEE ICC, Anchorage, AK, USA, May 2003, pp. 3575–3579
[25]
Gradshteyn I.S.Ryzhik I.M.: ‘Table of integrals, series, and products’ (Academic Press, San Diego, CA, 2000, 6th edn.)
[26]
Harsini J.S.Zorzi M.: ‘Transmission strategy design in cognitive radio systems with primary ARQ control and QoS provisioning’, IEEE Trans. Commun., 2014, 62, (6), pp. 1790–1802
[27]
Kwan R.Leung C.: ‘Gamma variate ratio distribution with application to CDMA performance analysis’. Proc. IEEE Symp. Advanced Wired/Wireless Communication, Princeton, NJ, USA, April 2005, pp. 188–191
[28]
Simon M.K.Alouini M.S.: ‘Digital Communication over Fading Channels’ (Wiley‐IEEE Press, 2004, 2nd edn.)
[29]
Grimmett G.R.Stirzaker D.R.: ‘Probability and Random Processes’ (Oxford University Press, 2001)
[30]
Peh E.Liang Y.C.Guan Y.L. et al.: ‘Energy‐efficient cooperative spectrum sensing in cognitive radio networks’. Proc. IEEE GLOBECOM, Houston, TX, USA, 2011, pp. 1–5

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IET Communications
IET Communications  Volume 10, Issue 2
January 2016
97 pages
EISSN:1751-8636
DOI:10.1049/cmu2.v10.2
Issue’s Table of Contents

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 01 January 2016

Author Tags

  1. cognitive radio
  2. hidden Markov models
  3. optimisation
  4. Rayleigh channels

Author Tags

  1. cognitive radio networks
  2. optimal sensing interval
  3. primary user
  4. PU
  5. secondary user
  6. solve
  7. hidden Markov model
  8. HMM
  9. imperfect spectrum sensing process
  10. Rayleigh fading channels
  11. underlay mode
  12. hybrid interweave mode
  13. energy consumption
  14. optimisation problem

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media