Nothing Special   »   [go: up one dir, main page]

skip to main content
article

On Copositive Programming and Standard Quadratic Optimization Problems

Published: 01 December 2000 Publication History

Abstract

A standard quadratic problem consists of finding global maximizers of a quadratic form over the standard simplex. In this paper, the usual semidefinite programming relaxation is strengthened by replacing the cone of positive semidefinite matrices by the cone of completely positive matrices (the positive semidefinite matrices which allow a factorization FFT where F is some non-negative matrix). The dual of this cone is the cone of copositive matrices (i.e., those matrices which yield a non-negative quadratic form on the positive orthant). This conic formulation allows us to employ primal-dual affine-scaling directions. Furthermore, these approaches are combined with an evolutionary dynamics algorithm which generates primal-feasible paths along which the objective is monotonically improved until a local solution is reached. In particular, the primal-dual affine scaling directions are used to escape from local maxima encountered during the evolutionary dynamics phase.

References

[1]
1. Baum, L. E. and Eagon, J. A. (1967), An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Amer. Math. Soc. 73: 360-363.
[2]
2. Baum, L. E. and Sell, G. R. (1968), Growth transformations for functions on manifolds. Pacif. J. Math. 27: 211-227.
[3]
3. Berman, A. (1988), Complete positivity. Linear Algebra Appl. 107: 57-63.
[4]
4. Berman, A. and Hershkowitz, D. (1987), Combinatorial results on completely positive matrices. Linear Algebra Appl. 95: 111-125.
[5]
5. Bomze, I. M. (1987), Remarks on the recursive structure of copositivity. J. Inf. Optimiz. Sci. 8: 243-260.
[6]
6. Bomze, I. M. (1996), Block pivoting and shortcut strategies for detecting copositivity. Linear Algebra Appl. 248: 161-184.
[7]
7. Bomze, I. M. (1997), Evolution towards the maximum clique. J. Global Optimiz. 10: 143-164.
[8]
8. Bomze, I. M. (1997), Global escape strategies for maximizing quadratic forms over a simplex. J. Global Optimiz. 11: 325-338.
[9]
9. Bomze, I. M. (1998), On standard quadratic optimization problems. J. Global Optimiz. 13: 369- 387.
[10]
10. Bomze, I. M. (2000), Linear-time detection of copositivity for tridiagonal matrices and extension to block-tridiagonality. SIAM J. Matrix Anal. Appl. 21: 840-848.
[11]
11. Bomze, I. M., Pelillo, M. and Giacomini, R. (1997), Evolutionary approach to the maximum clique problem: empirical evidence on a larger scale. In: Bomze, I. M., Csendes, T., Horst, R. and Pardalos, P. M. (eds.), Developments in Global Optimization, Kluwer, Dordrecht, pp. 95-108.
[12]
12. Bomze, I. M. and Stix, V. (1999), Genetical engineering via negative fitness: evolutionary dynamics for global optimization. Annals of O.R. 89: 279-318.
[13]
13. Crow, J. F., Kimura, M. (1970), An Introduction to Population Genetics Theory, Harper & Row, New York.
[14]
14. Danninger, G. (1990), A recursive algorithm to detect (strict) copositivity of a symmetric matrix. In: Rieder, U., Gessner, P., Peyerimhoff, A. and Radermacher, F. J., (eds.), Methods of Operations Research 62: 45-52. Hain, Meisenheim.
[15]
15. Drew, J. H., Johnson, C. R. and Loewy, R. (1994), Completely positive matrices associated with M-matrices. Linear and Multilinear Algebra 37: 303-310.
[16]
16. Fujisawa, K., Kojima, M. and Nakata, K. (1997), Exploiting sparsity in primal-dual interior-point methods for semidefinite programming. Math. Prog. 79: 235-253.
[17]
17. Fukuda, M., Kojima, M., Murota, K. and Nakata, K. (1999), Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework, Research Report B-358, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan.
[18]
18. Goemans, M. X. (1997), Semidefinite programming in combinatorial optimization. Math. Prog. 79: 143-161.
[19]
19. Hadeler, K. P. (1983), On copositive matrices. Linear Algebra Appl. 49: 79-89.
[20]
20. Hall, M., Jr. and M. Newman, (1963), Copositive and completely positive quadratic forms. Proc. Cambridge Philos. Soc. 59: 329-339.
[21]
21. Hannah, J. and Laffey, T. J. (1983), Nonnegative factorization of completely positive matrices. Linear Algebra Appl. 55: 1-9.
[22]
22. Helmberg, C., Rendl, F., Vanderbei, R. J. and Wolkowicz, H. (1996), An interior-point method for semidefinite programming. SIAM J. Optimiz. 6: 342-361.
[23]
23. Hofbauer, J. and Sigmund, K. (1988), The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge, UK.
[24]
24. Horst, R., Pardalos, P. M. and Thoai, N. V. (1995), Introduction to Global Optimization, Kluwer, Dordrecht.
[25]
25. Hummel, R. A. and Zucker, S. W. (1983), On the foundations of relaxation labeling processes. IEEE Trans. Pattern Anal. Machine Intell. 5: 267-287.
[26]
26. Jansen, B., Roos, C. and Terlaky, T. (1995), Interior point methods: a decade after Karmarkar. A survey, with application to the smallest eigenvalue problem. Statistica Neerlandica 50: 146- 170.
[27]
27. Kaykobad, M. (1987), On nonnegative factorization matrices. Linear Algebra Appl. 96: 27-33.
[28]
28. Klerk, E. de, Roos, C. and Terlaky, T. (1998), Polynomial primal-dual affine scaling algorithms in semidefinite programming. J. Combin. Optimiz. 2: 51-69.
[29]
29. Kojima, M., Shindoh, S. and Hara, S. (1997), Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optimiz. 7: 86-125.
[30]
30. Kojima, M. and Tunçel, L. (1998), Monotonicity of primal-dual interior-point algorithms for semidefinite programming problems. Optimiz. Methods Softw. 10: 275-296.
[31]
31. Lau, C. M. and Markham, T. L., (1978), Square triangular factorizations of completely positive matrices. J. Ind. Math. Soc. 28: 15-24.
[32]
32. Levinson, S. E., Rabiner, L. R. and Sondhi, M. M. (1983), An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition. Bell Syst. Tech. J. 62: 1035-1074.
[33]
33. Lyubich, Y., Maistrowskii, G. D. and Ol'khovskii, Yu.G. (1980), Selection-induced convergence to equilibrium in a single-locus autosomal population. Problems of Information Transmission 16: 66-75.
[34]
34. Markham, T. L. (1971), Factorizations of completely positive matrices. Proc. Cambridge Philos. Soc. 69: 53-58.
[35]
35. Martin, D. H. and Jacobson, D. H. (1981), Copositive matrices and definiteness of quadratic forms subject to homogeneous linear inequality constraints, Linear Algebra Appl. 35: 227-258.
[36]
36. Monteiro, R. D. C. (1997), Primal-dual path-following algorithms for semidefinite programming. SIAM J. Optimiz. 7: 663-678.
[37]
37. Muramatsu, M. and Vanderbei, R. J. (1997), Primal-dual affine-scaling algorithm fails for semidefinite programming. Technical Report SOR 97-04, Princeton University, NJ 08544.
[38]
38. Murty, K. G. and Kabadi, S. N. (1987), Some NP-complete problems in quadratic and linear programming. Math. Prog. 39: 117-129.
[39]
39. Nesterov, Y. E. and Nemirovskii, A. S. (1994), Interior point methods in convex programming: theory and applications. SIAM, Philadelphia, PA.
[40]
40. Nowak, I. (1999), A new semidefinite programming bound for indefinite quadratic forms over a simplex. J. Global Optimiz. 14: 357-364.
[41]
41. Pelillo, M. (1994), On the dynamics of relaxation labeling processes. Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, pp. 1006-1011.
[42]
42. Pelillo, M. (1995), Relaxation labeling networks for the maximum clique problem. J. Artif. Neural Networks 2: 313-327.
[43]
43. Raber, U. (1999), Nonconvex all-quadratic global optimization problems: solution methods, application and related topics. Ph.D. dissertation, University of Trier.
[44]
44. Rosenfeld, A., Hummel, R. A. and Zucker, S. W. (1976), Scene labeling by relaxation operations. IEEE Trans. Syst. Man Cybern. 6: 420-433.
[45]
45. Quist, A. J., de Klerk, E., Roos, C. and Terlaky, T. (1998), Copositive relaxation for general quadratic programming. Optimiz. Methods Softw. 9: 185-209.
[46]
46. Sigmund, K. (1987), Game dynamics, mixed strategies, and gradient systems. Theor. Pop. Biol. 32: 114-126.
[47]
47. Tunçel, L. (1999), Generalization of primal-dual interior-point methods to convex optimization problems in conic form. Technical Report CORR 99-35, University of Waterloo.
[48]
48. Väliaho, H. (1986), Criteria for copositive matrices. Linear Algebra Appl. 81: 19-34.
[49]
49. Väliaho, H. (1988), Testing the definiteness of matrices on polyhedral cones. Linear Algebra Appl. 101: 135-165.
[50]
50. Väliaho, H. (1989), Quadratic-programming criteria for copositive matrices. Linear Algebra Appl. 119: 163-182.
[51]
51. Xiang, S. H. and Xiang, S. W. (1998), Notes on completely positive matrices. Linear Algebra Appl. 271: 273-282.

Cited By

View all
  • (2025)Polyhedral properties of RLT relaxations of nonconvex quadratic programs and their implications on exact relaxationsMathematical Programming: Series A and B10.1007/s10107-024-02070-7209:1(397-433)Online publication date: 1-Jan-2025
  • (2024)The Complexity of Computing KKT Solutions of Quadratic ProgramsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649647(892-903)Online publication date: 10-Jun-2024
  • (2024)Approximation hierarchies for copositive cone over symmetric cone and their comparisonJournal of Global Optimization10.1007/s10898-023-01319-388:4(831-870)Online publication date: 1-Apr-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Global Optimization
Journal of Global Optimization  Volume 18, Issue 4
December 2000
114 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 December 2000

Author Tags

  1. Copositive programming
  2. Global maximization
  3. Positive semidefinite matrices
  4. Standard quadratic optimization

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Polyhedral properties of RLT relaxations of nonconvex quadratic programs and their implications on exact relaxationsMathematical Programming: Series A and B10.1007/s10107-024-02070-7209:1(397-433)Online publication date: 1-Jan-2025
  • (2024)The Complexity of Computing KKT Solutions of Quadratic ProgramsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649647(892-903)Online publication date: 10-Jun-2024
  • (2024)Approximation hierarchies for copositive cone over symmetric cone and their comparisonJournal of Global Optimization10.1007/s10898-023-01319-388:4(831-870)Online publication date: 1-Apr-2024
  • (2022)On Degenerate Doubly Nonnegative Projection ProblemsMathematics of Operations Research10.1287/moor.2021.120547:3(2219-2239)Online publication date: 1-Aug-2022
  • (2022)Strong Duality for General Quadratic Programs with Quadratic Equality ConstraintsJournal of Optimization Theory and Applications10.1007/s10957-022-02082-3195:1(297-313)Online publication date: 1-Oct-2022
  • (2022)Outcome-space branch-and-bound outer approximation algorithm for a class of non-convex quadratic programming problemsJournal of Global Optimization10.1007/s10898-022-01255-886:1(61-92)Online publication date: 19-Dec-2022
  • (2022)On strong duality in linear copositive programmingJournal of Global Optimization10.1007/s10898-021-00995-383:3(457-480)Online publication date: 1-Jul-2022
  • (2022)Conic formulation of QPCCs applied to truly sparse QPsComputational Optimization and Applications10.1007/s10589-022-00440-584:3(703-735)Online publication date: 13-Dec-2022
  • (2022)Completely positive factorization by a Riemannian smoothing methodComputational Optimization and Applications10.1007/s10589-022-00417-483:3(933-966)Online publication date: 1-Dec-2022
  • (2022)On standard quadratic programs with exact and inexact doubly nonnegative relaxationsMathematical Programming: Series A and B10.1007/s10107-020-01611-0193:1(365-403)Online publication date: 1-May-2022
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media