Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Kernel bounds for path and cycle problems

Published: 01 November 2013 Publication History

Abstract

Connectivity problems like k-Path and k-Disjoint Paths relate to many important milestones in parameterized complexity, namely the Graph Minors Project, color coding, and the recent development of techniques for obtaining kernelization lower bounds. This work explores the existence of polynomial kernels for various path and cycle problems, by considering nonstandard parameterizations. We show polynomial kernels when the parameters are a given vertex cover, a modulator to a cluster graph, or a (promised) max leaf number. We obtain lower bounds via cross-composition, e.g., for Hamiltonian Cycle and related problems when parameterized by a modulator to an outerplanar graph.

References

[1]
Adler, I., Kolliopoulos, S.G., Krause, P.K., Lokshtanov, D., Saurabh, S. and Thilikos, D.M., Tight bounds for linkages in planar graphs. In: Aceto, L., Henzinger, M., Sgall, J. (Eds.), Lecture Notes in Computer Science, vol. 6755. Springer. pp. 110-121.
[2]
Alon, N., Yuster, R. and Zwick, U., Color-coding. J. ACM. v42 i4. 844-856.
[3]
Arnborg, S., Lagergren, J. and Seese, D., Easy problems for tree-decomposable graphs. J. Algorithms. v12 i2. 308-340.
[4]
Berman, P. and Schnitger, G., On the complexity of approximating the independent set problem. Inf. Comput. v96 i1. 77-94.
[5]
Björklund, A., Determinant sums for undirected hamiltonicity. In: FOCS, IEEE Computer Society. pp. 173-182.
[6]
A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Narrow sieves for parameterized paths and packings, CoRR, 2010, abs/1007.1161.
[7]
Bodlaender, H.L., A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. v25 i6. 1305-1317.
[8]
Bodlaender, H.L., Downey, R.G., Fellows, M.R. and Hermelin, D., On problems without polynomial kernels. J. Comput. Syst. Sci. v75 i8. 423-434.
[9]
H.L. Bodlaender, B.M.P. Jansen, S. Kratsch, Cross-composition: A new technique for kernelization lower bounds, in: Proc. 28th STACS, 2011, pp. 165-176.
[10]
Bodlaender, H.L., Thomassé, S. and Yeo, A., Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. v412 i35. 4570-4578.
[11]
Borie, R.B., Parker, R.G. and Tovey, C.A., Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica. v7 i5&6. 555-581.
[12]
J. Chen, S. Lu, S.-H. Sze, F. Zhang, Improved algorithms for path, matching, and packing problems, in: Proc. 18th SODA, 2007, pp. 298-307.
[13]
Y. Chen, J. Flum, On parameterized path and chordless path problems, in: 22nd IEEE Conference on Computational Complexity, 2007, pp. 250-263.
[14]
Chen, Y., Flum, J. and Müller, M., Lower bounds for kernelizations and other preprocessing procedures. Theory Comput. Syst. v48 i4. 803-839.
[15]
Courcelle, B., The monadic second-order logic of graphs I: recognizable sets of finite graphs. Inf. Comput. v85 i1. 12-75.
[16]
Courcelle, B. and Mosbah, M., Monadic second-order evaluations on tree-decomposable graphs. Theor. Comput. Sci. v109 i1&2. 49-82.
[17]
M. Cygan, M. Pilipczuk, M. Pilipczuk, J.O. Wojtaszczyk, Kernelization hardness of connectivity problems in 2-degenerate graphs, in: Proc. 36th WG, 2010, pp. 147-158.
[18]
H. Dell, D. Marx, Kernelization of packing problems, in: Rabani {35}, pp. 68-81.
[19]
H. Dell, D. van Melkebeek, Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses, in: Proc. 42nd STOC, 2010, pp. 251-260.
[20]
Diestel, R., Graph Theory. 2010. fourth ed. Springer-Verlag, Heidelberg.
[21]
M. Dom, D. Lokshtanov, S. Saurabh, Incompressibility through colors and IDs, in: Proc. 36th ICALP, 2009, pp. 378-389.
[22]
Downey, R. and Fellows, M.R., . In: Monographs in Computer Science, Springer, New York.
[23]
Fellows, M.R., Hermelin, D., Rosamond, F.A. and Vialette, S., On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. v410 i1. 53-61.
[24]
Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A. and Saurabh, S., The complexity ecology of parameters: An illustration using bounded max leaf number. Theory Comput. Syst. v45 i4. 822-848.
[25]
Fortnow, L. and Santhanam, R., Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. v77 i1. 91-106.
[26]
Gabow, H.N., Maheswari, S.N. and Osterweil, L.J., On two problems in the generation of program test paths. IEEE Trans. Software Eng. v2 i3. 227-231.
[27]
Garey, M.R. and Johnson, D.S., Computers and Intractability, A Guide to the Theory of NP-Completeness. 1979. W.H. Freeman and Company, New York.
[28]
Guo, J. and Niedermeier, R., Invitation to data reduction and problem kernelization. SIGACT News. v38 i1. 31-45.
[29]
Held, M. and Karp, R.M., A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. v10 i1. 196-210.
[30]
D. Hermelin, X. Wu, Weak compositions and their applications to polynomial lower bounds for kernelization, in: Rabani {35}, pp. 104-113.
[31]
Kann, V., Polynomially bounded minimization problems that are hard to approximate. Nord. J. Comput. v1 i3. 317-331.
[32]
Kleitman, D.J. and West, D.B., Spanning trees with many leaves. SIAM J. Discret. Math. v4 i1. 99-106.
[33]
J. Kneis, D. Mölle, S. Richter, P. Rossmanith, Divide-and-color, in: Proc. 32nd WG, 2006, pp. 58-67.
[34]
Kolman, P. and Pangrác, O., On the complexity of paths avoiding forbidden pairs. Discrete Appl. Math. v157 i13. 2871-2876.
[35]
. In: Rabani, Y. (Ed.), Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM.
[36]
Robertson, N. and Seymour, P.D., Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B. v63 i1. 65-110.
[37]
Scott, J., Ideker, T., Karp, R.M. and Sharan, R., Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. v13 i2. 133-144.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 511, Issue
November, 2013
186 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 01 November 2013

Author Tags

  1. Graphs
  2. Kernelization
  3. Parameterized complexity
  4. Path and cycle problems
  5. Upper and lower bounds

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Packing arc-disjoint cycles in oriented graphsJournal of Computer and System Sciences10.1016/j.jcss.2024.103530143:COnline publication date: 1-Aug-2024
  • (2021)Graph Hamiltonicity Parameterized by Proper Interval Deletion SetLATIN 2020: Theoretical Informatics10.1007/978-3-030-61792-9_9(104-115)Online publication date: 5-Jan-2021
  • (2020)Complexity Issues of String to Graph Approximate MatchingLanguage and Automata Theory and Applications10.1007/978-3-030-40608-0_17(248-259)Online publication date: 4-Mar-2020
  • (2019)The Parameterized Complexity of Cycle Packing: Indifference is Not an IssueAlgorithmica10.1007/s00453-019-00599-081:9(3803-3841)Online publication date: 1-Sep-2019
  • (2019)Kernelization of Graph Hamiltonicity: Proper H-GraphsAlgorithms and Data Structures10.1007/978-3-030-24766-9_22(296-310)Online publication date: 5-Aug-2019
  • (2017)Turing kernelization for finding long paths and cycles in restricted graph classesJournal of Computer and System Sciences10.1016/j.jcss.2016.10.00885:C(18-37)Online publication date: 1-May-2017
  • (2017)Tractability, hardness, and kernelization lower bound for and/or graph solutionDiscrete Applied Mathematics10.1016/j.dam.2017.07.029232:C(125-133)Online publication date: 11-Dec-2017
  • (2017)Sparsification Upper and Lower Bounds for Graph Problems and Not-All-Equal SATAlgorithmica10.1007/s00453-016-0189-979:1(3-28)Online publication date: 1-Sep-2017
  • (2015)Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and Turing kernelsProceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms10.5555/2722129.2722171(616-629)Online publication date: 4-Jan-2015
  • (2015)A Completeness Theory for Polynomial (Turing) KernelizationAlgorithmica10.1007/s00453-014-9910-871:3(702-730)Online publication date: 1-Mar-2015

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media