Nothing Special   »   [go: up one dir, main page]

skip to main content
article

MR3-SMP: A symmetric tridiagonal eigensolver for multi-core architectures

Published: 01 December 2011 Publication History

Abstract

The computation of eigenvalues and eigenvectors of symmetric tridiagonal matrices arises frequently in applications; often as one of the steps in the solution of Hermitian and symmetric eigenproblems. While several accurate and efficient methods for the tridiagonal eigenproblem exist, their corresponding implementations usually target uni-processors or large distributed memory systems. Our new eigensolver MR^3-SMP is instead specifically designed for multi-core and many-core general purpose processors, which today have effectively replaced uni-processors. We show that in most cases MR^3-SMP is faster and achieves better speedups than state-of-the-art eigensolvers for uni-processors and distributed-memory systems.

References

[1]
Bai, Z., Demmel, J., Dongarra, J., Ruhe, A. and van der Vorst, H., Templates for the Solution of Algebraic Eigenvalue Problems - A Practical Guide. 2000. SIAM, Philadelphia.
[2]
Dhillon, I. and Parlett, B., Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra Appl. v387. 1-28.
[3]
Dhillon, I. and Parlett, B., Orthogonal eigenvectors and relative gaps. SIAM J. Matrix Anal. Appl. v25. 858-899.
[4]
Demmel, J., Marques, O., Parlett, B. and Voemel, C., Performance and accuracy of LAPACK's symmetric tridiagonal eigensolvers. SIAM J. Sci. Comput. v30. 1508-1526.
[5]
Anderson, E., Bai, Z., Bishof, C., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A. and Sorensen, D., LAPACK Users' Guide. 1999. third ed. SIAM, Philadelphia.
[6]
Dhillon, I., Parlett, B. and Voemel, C., The design and implementation of the MRRR algorithm. ACM Trans. Math. Software. v32. 533-560.
[7]
Bientinesi, P., Dhillon, I. and van de Geijn, R., A parallel eigensolver for dense symmetric matrices based on multiple relatively robust representations. SIAM J. Sci. Comput. v21. 43-66.
[8]
Blackford, L.S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I.S., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R.C., ScaLAPACK Users' Guide. 1997. SIAM, Philadelphia.
[9]
Voemel, C., ScaLAPACK's MRRR algorithm. ACM Trans. Math. Software. v37.
[10]
Dongarra, J., Cruz, J.D., Duff, I. and Hammarling, S., A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Software. v16. 1-17.
[11]
Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek, P. and Tomov, S., Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects. J. Phys.: Conf. Ser. v180.
[12]
Zee, F.G.V., Bientinesi, P., Low, T.M. and van de Geijn, R.A., Scalable parallelization of FLAME code via the workqueuing model. ACM Trans. Math. Software. v34. 10:1-10:29.
[13]
Quintana-Ortı¿, G., Quintana-Ortı¿, E.S., van de Geijn, R.A., Zee, F.G.V. and Chan, E., Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Trans. Math. Software. v36.
[14]
C. Lessig, P. Bientinesi, On parallelizing the MRRR algorithm for data-parallel coprocessors, in: 8th Intern. Conf. on Parallel Proc. and Applied Math., PPAM, 2009.
[15]
Wilkinson, J., The calculation of the eigenvectors of codiagonal matrices. Comput. J. v1. 90-96.
[16]
J. Francis, The QR transform - a unitary analogue to the LR transformation, Part I and II, Comput. J. 4 (1961/1962).
[17]
Kublanovskaya, V., On some algorithms for the solution of the complete eigenvalue problem. Zh. Vych. Mat. v1. 555-572.
[18]
Cuppen, J., A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. v36. 177-195.
[19]
Gu, M. and Eisenstat, S.C., A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. v16. 172-191.
[20]
Tisseur, F., Dongarra, J. and Dongarra, J., Parallelizing the divide and conquer algorithm for the symmetric tridiagonal eigenvalue problem on distributed memory architectures. SIAM J. Sci. Comput. v20. 2223-2236.
[21]
Lo, S.-S., Philippe, B. and Sameh, A., A multiprocessor algorithm for the symmetric tridiagonal eigenvalue problem. SIAM J. Sci. Stat. Comput. v8. 155-165.
[22]
Ipsen, L.C.F. and Jessup, E.R., Solving the symmetric tridiagonal eigenvalues problem on the hypercube. SIAM J. Sci. Stat. Comput. v11. 203-229.
[23]
Parlett, B. and Dhillon, I., Relatively robust representations of symmetric tridiagonals. Linear Algebra Appl. v309. 121-151.
[24]
Demmel, J., Dhillon, I. and Ren, H., On the correctness of some bisection-like parallel eigenvalue algorithms in floating point arithmetic. Electronic Trans. Numer. Anal. v3. 116-149.
[25]
Bernstein, H. and Goldstein, M., Parallel implementation of bisection for the calculation of eigenvalues of tridiagonal symmetric matrices. Computing. v37. 85-91.
[26]
Parlett, B. and Marques, O., An implementation of the DQDS algorithm (positive case). Linear Algebra Appl. v309. 217-259.
[27]
Rutishauser, H., Der quotienten-differenzen-algorithmus. Z. Angew. Math. Phys. v5. 223-251.
[28]
P. Willems, On MR3-Type Algorithms for the Tridiagonal Symmetric Eigenproblem and Bidiagonal SVD, Dissertation, University of Wuppertal, 2010.
[29]
Buttari, A., Langou, J., Kurzak, J. and Dongarra, J., Parallel tiled QR factorization for multicore architectures. Concurr. Comput.: Pract. Exp. v20. 1573G-1590.
[30]
Marques, O., Voemel, C., Demmel, J. and Parlett, B., Algorithm 880: a testing infrastructure for symmetric tridiagonal eigensolvers. ACM Trans. Math. Software. v35.

Cited By

View all
  • (2024)On computing modified moments for half-range Hermite weightsNumerical Algorithms10.1007/s11075-023-01615-995:3(1435-1457)Online publication date: 1-Mar-2024
  • (2016)Optimizing PLASMA eigensolver on large shared memory systemsProceedings of the 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems10.5555/3019094.3019104(73-80)Online publication date: 13-Nov-2016
  • (2015)An iteration-based hybrid parallel algorithm for tridiagonal systems of equations on multi-core architecturesConcurrency and Computation: Practice & Experience10.1002/cpe.351127:17(5076-5095)Online publication date: 10-Dec-2015
  1. MR3-SMP: A symmetric tridiagonal eigensolver for multi-core architectures

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Parallel Computing
    Parallel Computing  Volume 37, Issue 12
    December, 2011
    125 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 01 December 2011

    Author Tags

    1. Eigenvalue
    2. Eigenvector
    3. MRRR algorithm
    4. Multi-core
    5. Tridiagonal eigensolver

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 16 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)On computing modified moments for half-range Hermite weightsNumerical Algorithms10.1007/s11075-023-01615-995:3(1435-1457)Online publication date: 1-Mar-2024
    • (2016)Optimizing PLASMA eigensolver on large shared memory systemsProceedings of the 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems10.5555/3019094.3019104(73-80)Online publication date: 13-Nov-2016
    • (2015)An iteration-based hybrid parallel algorithm for tridiagonal systems of equations on multi-core architecturesConcurrency and Computation: Practice & Experience10.1002/cpe.351127:17(5076-5095)Online publication date: 10-Dec-2015

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media