Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

AttenGait: : Gait recognition with attention and rich modalities

Published: 17 April 2024 Publication History

Abstract

Current gait recognition systems employ different types of manual attention mechanisms, like horizontal cropping of the input data to guide the training process and extract useful gait signatures for people identification. Typically, these techniques are applied using silhouettes as input, which limits the learning capabilities of the models. Thus, due to the limited information provided by silhouettes, state-of-the-art gait recognition approaches must use very simple and manually designed mechanisms, in contrast to approaches proposed for other topics such as action recognition. To tackle this problem, we propose AttenGait, a novel model for gait recognition equipped with trainable attention mechanisms that automatically discover interesting areas of the input data. AttenGait can be used with any kind of informative modalities, such as optical flow, obtaining state-of-the-art results thanks to the richer information contained in those modalities. We evaluate AttenGait on two public datasets for gait recognition: CASIA-B and GREW; improving the previous state-of-the-art results on them, obtaining 95.8% and 70.7% average accuracy, respectively. Code will be available at https://github.com/fmcp/attengait.

Highlights

Novel cross-view gait recognition model equipped with trainable attention mechanisms.
Three novel attention blocks to discover important data regions for gait recognition.
Thorough experimental study to measure the impact of the different modalities.
State-of-the-art results for the public CASIA-B and GREW datasets.

References

[1]
Sepas-Moghaddam A., Etemad A., Deep gait recognition: A survey, IEEE Trans. Pattern Anal. Mach. Intell. (2022).
[2]
Castro F.M., Marín-Jiménez M.J., Guil N., de la Blanca N.P., Automatic learning of gait signatures for people identification, in: IWANN, Vol. 10306, 2017, pp. 257–270.
[3]
Delgado-Escaño R., Castro F.M., Cózar J.R., Marín-Jiménez M.J., Guil N., An end-to-end multi-task and fusion CNN for inertial-based gait recognition, IEEE Access 7 (2019) 1897–1908.
[4]
Delgado-Escaño R., Castro F.M., Guil N., Marín-Jiménez M.J., GaitCopy: Disentangling appearance for gait recognition by signature copy, IEEE Access 9 (2021) 164339–164347.
[5]
Castro F.M., Marín-Jiménez M.J., Guil N., de la Blanca N.P., Multimodal feature fusion for CNN-based gait recognition: an empirical comparison, Neural Comput. Appl. (2020) 1–21.
[6]
H. Chao, Y. He, J. Zhang, J. Feng, Gaitset: Regarding gait as a set for cross-view gait recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2019.
[7]
C. Fan, Y. Peng, C. Cao, X. Liu, S. Hou, J. Chi, Y. Huang, Q. Li, Z. He, GaitPart: Temporal Part-Based Model for Gait Recognition, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 14225–14233.
[8]
S. Hou, C. Cao, X. Liu, Y. Huang, Gait lateral network: Learning discriminative and compact representations for gait recognition, in: European Conference on Computer Vision, 2020, pp. 382–398.
[9]
B. Lin, S. Zhang, X. Yu, Gait recognition via effective global-local feature representation and local temporal aggregation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 14648–14656.
[10]
S. d’Ascoli, H. Touvron, M.L. Leavitt, A.S. Morcos, G. Biroli, L. Sagun, Convit: Improving vision transformers with soft convolutional inductive biases, in: International Conference on Machine Learning, 2021, pp. 2286–2296.
[11]
A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, C. Schmid, Vivit: A video vision transformer, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 6836–6846.
[12]
S. Yu, D. Tan, T. Tan, A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition, in: Proc. ICPR, Vol. 4, 2006, pp. 441–444.
[13]
Takemura N., Makihara Y., Muramatsu D., Echigo T., Yagi Y., Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition, IPSJ Trans. Comput. Vis. Appl. 10 (1) (2018) 4.
[14]
Z. Zhu, X. Guo, T. Yang, J. Huang, J. Deng, G. Huang, D. Du, J. Lu, J. Zhou, Gait recognition in the wild: A benchmark, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 14789–14799.
[15]
Phuong T.T., et al., Privacy-preserving deep learning via weight transmission, IEEE Trans. Inf. Forensics Secur. 14 (11) (2019) 3003–3015.
[16]
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x16 words: Transformers for image recognition at scale, in: International Conference on Learning Representations, 2021.
[17]
C. Fan, J. Liang, C. Shen, S. Hou, Y. Huang, S. Yu, OpenGait: Revisiting Gait Recognition Towards Better Practicality, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 9707–9716.
[18]
Wu Z., Huang Y., Wang L., Wang X., Tan T., A comprehensive study on cross-view gait based human identification with deep CNNs, IEEE Trans. Pattern Anal. Mach. Intell. 39 (2) (2017) 209–226.
[19]
Delgado-Escaño R., Castro F.M., Cózar J.R., Marín-Jiménez M.J., Guil N., Casilari E., A cross-dataset deep learning-based classifier for people fall detection and identification, Comput. Methods Programs Biomed. 184 (2020).
[20]
Z. Meng, S. Fu, J. Yan, H. Liang, A. Zhou, S. Zhu, H. Ma, J. Liu, N. Yang, Gait Recognition for Co-existing Multiple People Using Millimeter Wave Sensing, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2019.
[21]
An W., Yu S., Makihara Y., Wu X., Xu C., Yu Y., Liao R., Yagi Y., Performance evaluation of model-based gait on multi-view very large population database with pose sequences, IEEE Trans. Biom. Behav. Identity Sci. 2 (4) (2020) 421–430.
[22]
Liao R., Yu S., An W., Huang Y., A model-based gait recognition method with body pose and human prior knowledge, Pattern Recognit. 98 (2020).
[23]
X. Li, Y. Makihara, C. Xu, Y. Yagi, S. Yu, M. Ren, End-to-end model-based gait recognition, in: Proceedings of the Asian Conference on Computer Vision, 2020.
[24]
T. Teepe, J. Gilg, F. Herzog, S. Hörmann, G. Rigoll, Towards a deeper understanding of skeleton-based gait recognition, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1569–1577.
[25]
Wang L., Chen J., Liu Y., Frame-level refinement networks for skeleton-based gait recognition, Comput. Vis. Image Underst. 222 (2022).
[26]
J. Zheng, X. Liu, W. Liu, L. He, C. Yan, T. Mei, Gait Recognition in the Wild With Dense 3D Representations and a Benchmark, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
[27]
Xu C., Makihara Y., Li X., Yagi Y., Occlusion-aware human mesh model-based gait recognition, IEEE Trans. Inf. Forensics Secur. (2023).
[28]
F.M. Castro, M.J. Marín-Jiménez, N. Guil, S. López-Tapia, N.P. de la Blanca, Evaluation of CNN architectures for gait recognition based on optical flow maps, in: International Conference of the Biometrics Special Interest Group, 2017, pp. 251–258.
[29]
Kumar P., Mukherjee S., Saini R., Kaushik P., Roy P.P., Dogra D.P., Multimodal gait recognition with inertial sensor data and video using evolutionary algorithm, IEEE Trans. Fuzzy Syst. 27 (5) (2018) 956–965.
[30]
Marín-Jiménez M.J., Castro F.M., Delgado-Escaño R., Kalogeiton V., Guil N., UGaitNet: Multimodal gait recognition with missing input modalities, IEEE Trans. Inf. Forensics Secur. 16 (2021) 5452–5462.
[31]
J. Liang, C. Fan, S. Hou, C. Shen, Y. Huang, S. Yu, GaitEdge: Beyond plain end-to-end gait recognition for better practicality, in: European Conference on Computer Vision, 2022.
[32]
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser Ł., Polosukhin I., Attention is all you need, Adv. Neural Inf. Process. Syst. (2017).
[33]
H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jégou, Training data-efficient image transformers & distillation through attention, in: International Conference on Machine Learning, 2021, pp. 10347–10357.
[34]
L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F.E. Tay, J. Feng, S. Yan, Tokens-to-token vit: Training vision transformers from scratch on imagenet, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
[35]
K. Li, Y. Wang, P. Gao, G. Song, Y. Liu, H. Li, Y. Qiao, Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, in: International Conference on Learning Representations, 2022.
[36]
Fan H., Xiong B., Mangalam K., Li Y., Yan Z., Malik J., Feichtenhofer C., Multiscale vision transformers, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
[37]
H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, L. Zhang, Cvt: Introducing convolutions to vision transformers, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
[38]
Zhang Y., Huang Y., Yu S., Wang L., Cross-view gait recognition by discriminative feature learning, IEEE Trans. Image Process. (2019).
[39]
M. Wang, B. Lin, X. Guo, L. Li, Z. Zhu, J. Sun, S. Zhang, Y. Liu, X. Yu, GaitStrip: Gait Recognition via Effective Strip-based Feature Representations and Multi-Level Framework, in: Proceedings of the Asian Conference on Computer Vision, 2022.
[40]
Li G., Guo L., Zhang R., Qian J., Gao S., TransGait: Multimodal-based gait recognition with set transformer, Appl. Intell. (2022) 1–13.
[41]
Mogan J.N., Lee C.P., Lim K.M., Muthu K.S., Gait-ViT: Gait recognition with vision transformer, Sensors 22 (19) (2022) 7362.
[42]
J. Li, Y. Zhang, H. Shan, J. Zhang, Gaitcotr: Improved Spatial-Temporal Representation for Gait Recognition with a Hybrid Convolution-Transformer Framework, in: IEEE International Conference on Acoustics, Speech, and Signal Processing, 2023.
[43]
Y. Cui, Y. Kang, Multi-Modal Gait Recognition via Effective Spatial-Temporal Feature Fusion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
[44]
T. Teepe, A. Khan, J. Gilg, F. Herzog, S. Hörmann, G. Rigoll, Gaitgraph: Graph convolutional network for skeleton-based gait recognition, in: IEEE International Conference on Image Processing, 2021.
[45]
Fan C., Hou S., Huang Y., Yu S., Exploring deep models for practical gait recognition, 2023, arXiv preprint arXiv:2303.03301.
[46]
Liang J., Fan C., Hou S., Shen C., Huang Y., Yu S., Gaitedge: Beyond plain end-to-end gait recognition for better practicality, in: European Conference on Computer Vision, Springer, 2022, pp. 375–390.
[47]
G. Farnebäck, Two-Frame Motion Estimation Based on Polynomial Expansion, in: Image Analysis: 13th Scandinavian Conference, Vol. 2749, 2003, pp. 363–370.
[48]
X. Huang, D. Zhu, H. Wang, X. Wang, B. Yang, B. He, W. Liu, B. Feng, Context-sensitive temporal feature learning for gait recognition, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 12909–12918.
[49]
H. Dou, P. Zhang, W. Su, Y. Yu, Y. Lin, X. Li, GaitGCI: Generative Counterfactual Intervention for Gait Recognition, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
[50]
K. Ma, Y. Fu, D. Zheng, C. Cao, X. Hu, Y. Huang, Dynamic Aggregated Network for Gait Recognition, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
[51]
R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2017, pp. 618–626.
[52]
McInnes L., Healy J., Melville J., Umap: Uniform manifold approximation and projection for dimension reduction, arXiv (2018).

Cited By

View all
  • (2024)SSGait: enhancing gait recognition via semi-supervised self-supervised learningApplied Intelligence10.1007/s10489-024-05385-254:7(5639-5657)Online publication date: 24-Apr-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Pattern Recognition
Pattern Recognition  Volume 148, Issue C
Apr 2024
747 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 17 April 2024

Author Tags

  1. Gait
  2. Optical flow
  3. Deep learning
  4. Attention
  5. Biometrics

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)SSGait: enhancing gait recognition via semi-supervised self-supervised learningApplied Intelligence10.1007/s10489-024-05385-254:7(5639-5657)Online publication date: 24-Apr-2024

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media