Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Multiple instance learning

Published: 01 May 2018 Publication History

Abstract

The characteristics specific of MIL problems are formally identified and described.MIL methods and applications are reviewed in the light of the problem characteristics.Comparative experiments show the impact of problem characteristics on 16 reference methods.Recommendation are issued for future benchmarking.Promising avenue of research are identified. Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research. Code is available on-line at https://github.com/macarbonneau/MILSurvey.

References

[1]
J. Hoffman, D. Pathak, T. Darrell, K. Saenko, Detector discovery in the wild: joint multiple instance and representation learning, 2015.
[2]
J. Wu, Y. Yu, C. Huang, K. Yu, Deep multiple instance learning for image classification and auto-annotation, 2015.
[3]
T.G. Dietterich, R.H. Lathrop, T. Lozano-Prez, Solving the multiple instance problem with axis-parallel rectangles, Artif. Intell., 89 (1997) 31-71.
[4]
Y. Chen, J. Bi, J.Z. Wang, MILES: multiple-instance learning via embedded instance selection, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006) 1931-1947.
[5]
R. Rahmani, S.A. Goldman, MISSL: multiple-instance semi-supervised learning, 2006.
[6]
S. Andrews, I. Tsochantaridis, T. Hofmann, Support vector machines for multiple-instance learning, 2002.
[7]
Q. Zhang, S.A. Goldman, W. Yu, J. Fritts, Content-based image retrieval using multiple-instance learning, 2002.
[8]
S. Phan, D.-D. Le, S. Satoh, Multimedia event detection using event-driven multiple instance learning, 2015.
[9]
R.G. Cinbis, J. Verbeek, C. Schmid, Weakly supervised object localization with multi-fold multiple instance learning, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017) 189-203.
[10]
Z.-H. Zhou, Y.-Y. Sun, Y.-F. Li, Multi-instance learning by treating instances as non-I.I.D. samples, 2009.
[11]
R. Bunescu, R. Mooney, Learning to extract relations from the web using minimal supervision, 2007.
[12]
F. Briggs, X.Z. Fern, R. Raich, Rank-loss support instance machines for MIML instance annotation, 2012.
[13]
Z.-h. Zhou, Multi-Instance Learning: A Survey, 2004.
[14]
B. Babenko, Multiple Instance Learning: Algorithms and Applications, San Diego, USA, 2008.
[15]
J. Amores, Multiple instance classification: review, taxonomy and comparative study, Artif. Intell., 201 (2013) 81-105.
[16]
G. Doran, S. Ray, A theoretical and empirical analysis of support vector machine methods for multiple-Instance classification, Mach. Learn., 97 (2014) 79-102.
[17]
J. Foulds, E. Frank, A review of multi-instance learning assumptions, Knowl. Eng. Rev., 25 (2010) 1-25.
[18]
S. Ray, M. Craven, Supervised versus multiple instance learning: an empirical comparison, 2005.
[19]
V. Cheplygina, D.M. Tax, M. Loog, On classification with bags, groups and sets, Pattern Recognit. Lett., 59 (2015) 11-17.
[20]
G. Vanwinckelen, V. Tragante do O, D. Fierens, Instance-level accuracy versus bag-level accuracy in multi-instance learning, Data Min. Knowl. Discov., 30 (2016) 313-341.
[21]
E. Alpaydin, V. Cheplygina, M. Loog, D.M. Tax, Single- vs. multiple-instance classification, Pattern Recognit., 48 (2015) 2831-2838.
[22]
V. Cheplygina, L. Srensen, D.M.J. Tax, M. Bruijne, M. Loog, Label stability in multiple instance learning, 2015.
[23]
V. Cheplygina, D.M.J. Tax, Characterizing multiple instance datasets, 2015.
[24]
F. Li, C. Sminchisescu, Convex multiple-instance learning by estimating likelihood ratio, 2010.
[25]
Y. Han, Q. Tao, J. Wang, Avoiding false positive in multi-instance learning, 2010.
[26]
S. Yan, X. Zhu, G. Liu, Sparse multiple instance learning as document classification, Multimed. Tools Appl., 76 (2017) 4553-4570.
[27]
R.C. Bunescu, R.J. Mooney, Multiple instance learning for sparse positive bags, 2007.
[28]
Y. Li, D.M. Tax, R.P. Duin, M. Loog, Multiple-instance learning as a classifier combining problem, Pattern Recognit., 46 (2013) 865-874.
[29]
O. Maron, T. Lozano-Prez, A framework for multiple-instance learning, 1998.
[30]
M.-A. Carbonneau, E. Granger, A.J. Raymond, G. Gagnon, Robust multiple-instance learning ensembles using random subspace instance selection, Pattern Recognit., 58 (2016) 83-99.
[31]
Y. Xiao, B. Liu, Z. Hao, A sphere-description-based approach for multiple-instance learning, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017) 242-257.
[32]
N. Weidmann, E. Frank, B. Pfahringer, A two-level learning method for generalized multi-instance problems, 2003.
[33]
G. Doran, Case Western Reserve University, 2015.
[34]
M.-A. Carbonneau, E. Granger, G. Gagnon, Decision threshold adjustment strategies for increased accuracy in multiple instance learning, 2016.
[35]
Q. Zhang, S.A. Goldman, EM-DD: an improved multiple-instance learning technique, 2001.
[36]
Z.-H. Zhou, M.-L. Zhang, Solving multi-instance problems with classifier ensemble based on constructive clustering, Knowl. Inf. Syst., 11 (2007) 155-170.
[37]
Z.-J. Zha, X.-S. Hua, T. Mei, J. Wang, G.-J. Qi, Z. Wang, Joint multi-label multi-instance learning for image classification, 2008.
[38]
Z.-H. Zhou, M.-L. Zhang, S.-J. Huang, Y.-F. Li, Multi-instance multi-label learning, Artif. Intell., 176 (2012) 2291-2320.
[39]
F. Herrera, S. Ventura, R. Bello, C. Cornelis, A. Zafra, D. Snchez-Tarrag, S. Vluymans, Multiple Instance Multiple Label Learning, Springer, pp. 209230.
[40]
D.R. Dooly, Q. Zhang, S.A. Goldman, R.A. Amar, Multiple instance learning of real valued data, J. Mach. Learn. Res., 3 (2003) 651-678.
[41]
S. Ray, D. Page, Multiple instance regression, 2001.
[42]
Z. Wang, V. Radosavljevic, B. Han, Z. Obradovic, S. Vucetic, Aerosol optical depth prediction from satellite observations by multiple instance regression, 2008.
[43]
K.L. Wagstaff, T. Lane, Salience assignment for multiple-instance regression, 2007.
[44]
N. Pappas, A. Popescu-Belis, Explaining the stars: weighted multiple-instance learning for aspect-based sentiment analysis, 2014.
[45]
Y. EL-Manzalawy, D. Dobbs, V. Honavar, Predicting MHC-II binding affinity using multiple instance regression, IEEE/ACM Trans. Comput. Biol. Bioinform., 8 (2011) 1067-1079.
[46]
C. Bergeron, G. Moore, J. Zaretzki, C.M. Breneman, K.P. Bennett, Fast bundle algorithm for multiple-instance learning, IEEE Trans. Pattern Anal. Mach. Intell., 34 (2012) 1068-1079.
[47]
Y. Hu, M. Li, N. Yu, Multiple-instance ranking: learning to rank images for image retrieval, 2008.
[48]
M.-L. Zhang, Z.-H. Zhou, Multi-instance clustering with applications to multi-instance prediction, Appl. Intell., 31 (2009) 47-68.
[49]
D. Zhang, F. Wang, L. Si, T. Li, Maximum margin multiple instance clustering with applications to image and text clustering, IEEE Trans. Neural Netw., 22 (2011) 739-751.
[50]
F. Herrera, S. Ventura, R. Bello, C. Cornelis, A. Zafra, D. Snchez-Tarrag, S. Vluymans, Multiple Instance Learning: Foundation and Algorithms, Springer, 2016.
[51]
G. Quellec, G. Cazuguel, B. Cochener, M. Lamard, Multiple-instance learning for medical image and video analysis, IEEE Rev. Biomed. Eng., PP (2017).
[52]
S. Sabato, N. Tishby, Multi-instance learning with any hypothesis class, J. Mach. Learn. Res., 13 (2012) 2999-3039.
[53]
M.-A. Carbonneau, E. Granger, G. Gagnon, Witness identification in multiple instance learning using random subspaces, 2016.
[54]
X.S. Wei, Z.H. Zhou, An empirical study on image bag generators for multi-instance learning, Mach. Learn., 105 (2016) 155-198.
[55]
E. Nowak, F. Jurie, B. Triggs, Sampling strategies for bag-of-features image classification, 2006.
[56]
H. Wang, M.M. Ullah, A. Klaser, I. Laptev, C. Schmid, Evaluation of local spatio-temporal features for action recognition, 2009.
[57]
R. Venkatesan, P. Chandakkar, B. Li, Simpler non-parametric methods provide as good or better results to multiple-instance learning, 2015.
[58]
M. Kandemir, F.A. Hamprecht, Computer-aided diagnosis from weak supervision: a benchmarking study., Comput. Med. Imaging Graph., 42 (2015) 44-50.
[59]
B. Babenko, P. Dollr, Z. Tu, S. Belongie, Simultaneous learning and alignment: multi-instance and multi-pose learning, 2008.
[60]
W.J. Li, D.Y. Yeung, MILD: multiple-instance learning via disambiguation, IEEE Trans. Knowl. Data Eng., 22 (2010) 76-89.
[61]
B. Babenko, M.-H. Yang, S. Belongie, Robust object tracking with online multiple instance learning, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011) 1619-1632.
[62]
P. Viola, J.C. Platt, C. Zhang, Multiple instance boosting for object detection, 2006.
[63]
P. Auer, R. Ortner, A Boosting Approach to Multiple Instance Learning.
[64]
Y. Jia, C. Zhang, Instance-level semisupervised multiple instance learning, 2008.
[65]
C. Yang, M. Dong, J. Hua, Region-based image annotation using asymmetrical support vector machine-based multiple-instance learning, 2006.
[66]
Z.-H. Zhou, X.-B. Xue, Y. Jiang, Locating regions of interest in CBIR with multi-instance learning techniques, 2005.
[67]
Z.-H. Zhou, J.-M. Xu, On the relation between multi-instance learning and semi-supervised learning, 2007.
[68]
Y.-F. Li, J.T. Kwok, I.W. Tsang, Z.-H. Zhou, A convex method for locating regions of interest with multi-instance learning, Berlin, Heidelberg, 2009.
[69]
A. Blum, A. Kalai, A note on learning from multiple-instance examples, Mach. Learn., 30 (1998) 23-29.
[70]
J. Amores, Vocabulary-based approaches for multiple-instance data: a comparative study, 2010.
[71]
G. Doran, S. Ray, Learning instance concepts from multiple-instance data with bags as distributions, 2014.
[72]
X.S. Wei, J. Wu, Z.H. Zhou, Scalable multi-instance learning, 2014.
[73]
T. Grtner, P.A. Flach, A. Kowalczyk, A.J. Smola, Multi-instance kernels, 2002.
[74]
X. Xu, E. Frank, Logistic regression and boosting for labeled bags of instances, 2004.
[75]
P. Gehler, O. Chapelle, Deterministic annealing for multiple-instance learning, 2007.
[76]
K. Ali, K. Saenko, Confidence-rated multiple instance boosting for object detection, 2014.
[77]
D. Zhang, Y. Liu, L. Si, J. Zhang, R.D. Lawrence, Multiple instance learning on structured data, 2011.
[78]
J. Wu, X. Zhu, C. Zhang, P.S. Yu, Bag constrained structure pattern mining for multi-graph classification, IEEE Trans. Knowl. Data Eng., 26 (2014) 2382-2396.
[79]
J. Chai, H. Chen, L. Huang, F. Shang, Maximum margin multiple-instance feature weighting, Pattern Recognit., 47 (2014) 2091-2103.
[80]
I. Laptev, M. Marszalek, C. Schmid, B. Rozenfeld, Learning realistic human actions from movies, 2008.
[81]
A. Zafra, M. Pechenizkiy, S. Ventura, ReliefF-MI: an extension of relieff to multiple instance learning, Neurocomputing, 75 (2012) 210-218.
[82]
I. Kononenko, Estimating Attributes: Analysis and Extensions of RELIEF, pp. 171182.
[83]
A. Zafra, S. Ventura, G3P-MI: a genetic programming algorithm for multiple instance learning, Inf. Sci., 180 (2010) 4496-4513.
[84]
A. Zafra, M. Pechenizkiy, S. Ventura, HyDR-MI: a hybrid algorithm to reduce dimensionality in multiple instance learning, Inf. Sci., 222 (2013) 282-301.
[85]
V.C. Raykar, B. Krishnapuram, J. Bi, M. Dundar, R.B. Rao, Bayesian multiple instance learning: automatic feature selection and inductive transfer, 2008.
[86]
M.-L. Zhang, Z.-H. Zhou, Improve multi-instance neural networks through feature selection, Neural Process. Lett., 19 (2004) 1-10.
[87]
Z.-H. Zhou, M.-L. Zhang, Neural networks for multi-instance learning, 2002.
[88]
W. Ping, Y. Xu, K. Ren, C.-H. Chi, F. Shen, Non-I.I.D. multi-instance dimensionality reduction by learning a maximum bag margin subspace, 2010.
[89]
S. Kim, S. Choi, Local dimensionality reduction for multiple instance learning, 2010.
[90]
J. Chai, X. Ding, H. Chen, T. Li, Multiple-instance discriminant analysis, Pattern Recognit., 47 (2014) 2517-2531.
[91]
Y.-Y. Sun, M.K. Ng, Z.-H. Zhou, Multi-instance dimensionality reduction, 2010.
[92]
F. Kang, R. Jin, R. Sukthankar, Correlated label propagation with application to multi-label learning, 2006.
[93]
V. Cheplygina, D.M. Tax, M. Loog, Multiple instance learning with bag dissimilarities, Pattern Recognit., 48 (2015) 264-275.
[94]
G. Csurka, C.R. Dance, L. Fan, J. Willamowski, C. Bray, Visual categorization with bags of keypoints, 2004.
[95]
W. Ping, Y. Xu, J. Wang, X.-S. Hua, FAMER: making multi-instance learning better and faster, 2011.
[96]
H.-Y. Wang, Q. Yang, H. Zha, Adaptive P-posterior mixture-model kernels for multiple instance learning, 2008.
[97]
G.J. Qi, X.S. Hua, Y. Rui, T. Mei, J. Tang, H.J. Zhang, Concurrent multiple instance learning for image categorization, 2007.
[98]
M.S. Ryoo, J.K. Aggarwal, Spatio-temporal relationship match: video structure comparison for recognition of complex human activities, 2009.
[99]
A. Mcgovern, D. Jensen, Identifying predictive structures in relational data using multiple instance learning, 2003.
[100]
J. Wu, S. Pan, X. Zhu, Z. Cai, Boosting for multi-graph classification, IEEE Trans. Cybern., 45 (2015) 416-429.
[101]
J. Bi, J. Liang, Multiple instance learning of pulmonary embolism detection with geodesic distance along vascular structure, 2007.
[102]
K. Grauman, T. Darrell, The pyramid match kernel: discriminative classification with sets of image features, 2005.
[103]
S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, 2006.
[104]
D.M.J. Tax, E. Hendriks, M.F. Valstar, M. Pantic, The detection of concept frames using clustering multi-instance learning, 2010.
[105]
X. Guan, R. Raich, W.-K. Wong, Efficient multi-instance learning for activity recognition from time series data using an auto-regressive hidden markov model, 2016.
[106]
J. Warrell, P.H.S. Torr, Multiple-instance learning with structured bag models, 2011.
[107]
Z. Li, G.-H. Geng, J. Feng, J.-y. Peng, C. Wen, J.-l. Liang, Multiple instance learning based on positive instance selection and bag structure construction, Pattern Recognit. Lett., 40 (2014) 19-26.
[108]
J. Wang, J.-D. Zucker, Solving the multiple-instance problem: a lazy learning approach, 2000.
[109]
Y. Chen, J.Z. Wang, Image categorization by learning and reasoning with regions, J. Mach. Learn. Res., 5 (2004) 913-939.
[110]
Q. Wang, L. Si, D. Zhang, A discriminative data-dependent mixture-model approach for multiple instance learning in image classification, 2012.
[111]
D.M. Tax, R.P. Duin, Learning curves for the analysis of multiple instance classifiers, 2008.
[112]
C. Zhang, X. Chen, M. Chen, S.-C. Chen, M.-L. Shyu, A multiple instance learning approach for content based image retrieval using one-class support vector machine, 2005.
[113]
R.-S. Wu, W.-H. Chung, Ensemble one-class support vector machines for content-based image retrieval, Expert Syst. Appl., 36 (2009) 4451-4459.
[114]
Z. Wang, Z. Zhao, C. Zhang, Learning with only multiple instance positive bags, 2016.
[115]
W. Li, N. Vasconcelos, Multiple instance learning for soft bags via top instances, 2015.
[116]
Y. Rubner, C. Tomasi, L.J. Guibas, The Earth novers distance as a metric for image retrieval, Int. J. Comput. Vis., 40 (2000) 99-121.
[117]
A. Erdem, E. Erdem, Multiple-instance learning with instance selection via dominant sets, 2011.
[118]
Z. Fu, A. Robles-Kelly, J. Zhou, MILIS: multiple instance learning with instance selection, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011) 958-977.
[119]
S. Bandyopadhyay, D. Ghosh, R. Mitra, Z. Zhao, MBSTAR: multiple instance learning for predicting specific functional binding sites in microrna targets, Sci. Rep., 5 (2015) 8004.
[120]
D. Palachanis, Delft University of Technology, 2014.
[121]
R. Eksi, H.-D. Li, R. Menon, Y. Wen, G.S. Omenn, M. Kretzler, Y. Guan, Systematically differentiating functions for alternatively spliced isoforms through integrating RNA-seq data., PLoS Comput. Biol., 9 (2013) 1-16.
[122]
S. Vijayanarasimhan, K. Grauman, Keywords to visual categories: multiple-instance learning for weakly supervised object categorization, 2008.
[123]
O. Maron, A.L. Ratan, Multiple-instance learning for natural scene classification, 1998.
[124]
C. Leistner, A. Saffari, H. Bischof, MIForests: multiple-instance learning with randomized trees, 2010.
[125]
X. Song, L. Jiao, S. Yang, X. Zhang, F. Shang, Sparse coding and classifier ensemble based multi-Instance learning for image categorization, Signal Process., 93 (2013) 1-11.
[126]
H. Xu, S. Venugopalan, V. Ramanishka, M. Rohrbach, K. Saenko, A multi-scale multiple instance video description network, CoRR, abs/1505.0 (2016) 1-14.
[127]
A. Karpathy, L. Fei-Fei, Deep visual-semantic alignments for generating image descriptions, 2015.
[128]
H. Fang, S. Gupta, F. Iandola, R.K. Srivastava, L. Deng, P. Dollar, J. Gao, X. He, M. Mitchell, J.C. Platt, C. Lawrence Zitnick, G. Zweig, From captions to visual concepts and back, 2015.
[129]
J.Y. Zhu, J. Wu, Y. Xu, E. Chang, Z. Tu, Unsupervised object class discovery via saliency-Guided multiple class learning, IEEE Trans. Pattern Anal. Mach. Intell., 37 (2015) 862-875.
[130]
H.O. Song, R. Girshick, S. Jegelka, J. Mairal, Z. Harchaoui, T. Darrell, On learning to localize objects with minimal supervision, 2014.
[131]
B. Babenko, M.-H. Yang, S. Belongie, Robust object tracking with online multiple instance learning, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011) 1619-1632.
[132]
M. Sapienza, F. Cuzzolin, P.H.S. Torr, Learning discriminative spacetime action parts from weakly labelled videos, Int. J. Comput. Vis., 110 (2014) 30-47.
[133]
A. Mller, S. Behnke, Multi-instance methods for partially supervised image segmentation, 2012.
[134]
B. Hariharan, P. Arbelez, R. Girshick, J. Malik, Simultaneous detection and segmentation, 2014.
[135]
A. Vezhnevets, J.M. Buhmann, Towards weakly supervised semantic segmentation by means of multiple instance and multitask learning, 2010.
[136]
K.T. Lai, F.X. Yu, M.S. Chen, S.F. Chang, Video event detection by inferring temporal instance labels, 2014.
[137]
J. Wang, B. Li, W. Hu, O. Wu, Horror video scene recognition via multiple-instance learning, 2011.
[138]
K. Zhang, H. Song, Real-time visual tracking via online weighted multiple instance learning, Pattern Recognit., 46 (2013) 397-411.
[139]
H. Lu, Q. Zhou, D. Wang, R. Xiang, A co-training framework for visual tracking with multiple instance learning, 2011.
[140]
J. Zhu, B. Wang, X. Yang, W. Zhang, Z. Tu, Action recognition with actons, 2013.
[141]
Y. Xu, Weakly supervised histopathology cancer image segmentation and classification, MedIA, 18 (2014) 591-604.
[142]
G. Quellec, A multiple-instance learning framework for diabetic retinopathy screening, MedIA, 16 (2012) 1228-1240.
[143]
T. Tong, R. Wolz, Q. Gao, R. Guerrero, J.V. Hajnal, D. Rueckert, A.D.N. Initiative, Multiple instance learning for classification of dementia in brain mri, Med. Image Anal., 18 (2014) 808-818.
[144]
J. Melendez, A novel multiple-instance learning-based approach to computer-aided detection of tuberculosis on chest x-rays, Trans. Med. Imaging, 31 (2014) 179-192.
[145]
V. Cheplygina, L. Srensen, D.M.J. Tax, J.H. Pedersen, M. Loog, M. de Bruijne, Classification of COPD with multiple instance learning, 2014.
[146]
Z.S. Harris, Distributional structure., Word, 10 (1954) 146-162.
[147]
Y. Zhang, A.C. Surendran, J.C. Platt, M. Narasimhan, Learning from multi-topic web documents for contextual advertisement, 2008.
[148]
D. Zhang, J. He, R. Lawrence, Mi2ls: multi-instance learning from multiple informationsources, 2013.
[149]
B. Settles, M. Craven, S. Ray, Multiple-instance active learning, 2008.
[150]
Z. Jorgensen, Y. Zhou, M. Inge, A multiple instance learning strategy for combating good word attacks on spam filters, J. Mach. Learn. Res., 9 (2008) 1115-1146.
[151]
D. Kotzias, M. Denil, P. Blunsom, N. de Freitas, Deep multi-instance transfer learning, CoRR, abs/1411.3 (2014) 1-9.
[152]
D. Kotzias, M. Denil, N. de Freitas, P. Smyth, From group to individual labels using deep features, 2015.
[153]
Z.-H. Zhou, K. Jiang, M. Li, Multi-instance learning based web mining, Appl. Intell., 22 (2005) 135-147.
[154]
A. Zafra, S. Ventura, E. Herrera-Viedma, C. Romero, Multiple instance learning with genetic programming for web mining, Comput. Ambient Intell., 4507 (2007) 919-927.
[155]
M.I. Mandel, D.P.W. Ellis, Multiple-Instance Learning for Music information Retrieval, 2008.
[156]
R.F. Lyon, Machine hearing: an emerging field {exploratory DSP}, Signal Process. Mag. IEEE, 27 (2010) 131-139.
[157]
J.F. Ruiz-Muoz, M. Orozco-Alzate, G. Castellanos-Dominguez, Multiple instance learning-based birdsong classification using unsupervised recording segmentation, 2015.
[158]
M.-A. Carbonneau, E. Granger, Y. Attabi, G. Gagnon, Feature learning from spectrograms for assessment of personality traits, IEEE Trans. Affective Comput. PP (99) (2017) 110.
[159]
A. Kumar, B. Raj, Weakly supervised scalable audio content analysis, Seattle, WA, 2016.
[160]
M. Stikic, D. Larlus, S. Ebert, B. Schiele, Weakly supervised recognition of daily life activities with wearable sensors, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011) 2521-2537.
[161]
J.F. Murray, G.F. Hughes, K. Kreutz-Delgado, Machine learning methods for predicting failures in hard drives: A Multiple-Instance application, J. Mach. Learn. Res., 6 (2005) 783-816.
[162]
A. Manandhar, K.D. Morton, L.M. Collins, P.A. Torrione, Multiple instance learning for landmine detection using ground penetrating radar, 2012.
[163]
A. Karem, H. Frigui, A multiple instance learning approach for landmine detection using ground penetrating radar, 2011.
[164]
D. Tax, V. Cheplygina, MIL, A Matlab Toolbox for Multiple Instance Learning, 2015, Version 1.1.0. https://prlab.tudelft.nl/david-tax/mil.html.
[165]
J.H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. Stat., 29 (2001) 1189-1232.
[166]
R. Rahmani, S.A. Goldman, H. Zhang, J. Krettek, J.E. Fritts, Localized content based image retrieval, 2005.
[167]
K. Lang, Newsweeder: learning to filter netnews, 1995.
[168]
P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, D. Whiteson, Parameterized machine learning for high-energy physics, (2016) 16.
[169]
P.W. Frey, D.J. Slate, Letter recognition using holland-style adaptive classifiers, Mach. Learn., 6 (1991) 161-182.
[170]
M. Stone, Cross-validatory choice and assessment of statistical predictions, J. R. Stat. Soc. Ser. B (Methodol.), 36 (1974) 111-147.
[171]
J. Demsar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7 (2006) 1-30.
[172]
B. Frenay, M. Verleysen, Classification in the presence of label noise: a survey, IEEE Trans. Neural Networks Learn. Syst., 25 (2014) 845-869.
[173]
M. Everingham, L. Van Gool, C.K. Williams, J. Winn, A. Zisserman, The PASCAL visual object classes (VOC) challenge, Int. J. Comput. Vis., 88 (2010) 303-338.
[174]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, Imagenet large scale visual recognition challenge, Int. J. Comput. Vis., 115 (2015) 211-252.
[175]
M. Kandemir, C. Zhang, F.A. Hamprecht, Empowering multiple instance histopathology cancer diagnosis by cell graphs, Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI (2014).
[176]
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA Data Mining Software: An Update, SIGKDD Explor. Newsl., 11 (2009) 10-18.
[177]
J. Alcala-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garcia, L. Sanchez, F. Herrera, KEEL Data-mining software tool: data set repository, integration of algorithms and experimental analysis framework, J. Mult. Log. Soft Comput., 17 (2011) 255-287.
[178]
S. Ventura, C. Romero, A. Zafra, J.A. Delgado, C. Hervas, Jclec: a java framework for evolutionary computation, Soft Comput., 12 (2008) 381-392.
[179]
G.M. Fung, M. Dundar, B. Krishnapuram, R.B. Rao, Multiple instance learning for computer aided diagnosis, 2007.
[180]
L. Bottou, O. Chapelle, D. DeCoste, J. Weston, Support Vector Machine Solvers, MIT Press, pp. 127.
[181]
C. Bergeron, J. Zaretzki, C. Breneman, K.P. Bennett, Multiple instance ranking, 2008.
[182]
O.L. Mangasarian, E.W. Wild, Multiple instance classification via successive linear programming, J. Optim. Theory Appl., 137 (2008) 555-568.
[183]
A. Fuduli, M. Gaudioso, G. Giallombardo, Minimizing nonconvex nonsmooth functions via cutting planes and proximity control, SIAM J. Optim., 14 (2003) 743-756.
[184]
Z. Fu, A. Robles-Kelly, Fast multiple instance learning via L1,2 logistic regression, 2008.
[185]
D. Xu, J. Wu, D. Li, Y. Tian, X. Zhu, X. Wu, SALE: self-adaptive LSH encoding for multi-instance learning, Pattern Recognit., 71 (2017) 460-482.
[186]
L. Yuan, J. Liu, X. Tang, Combining example selection with instance selection to speed up multiple-instance learning, Neurocomputing, 129 (2014) 504-515.
[187]
A. Cano, A. Zafra, S. Ventura, Speeding up multiple instance learning classification rules on GPUs, Knowl. Inf. Syst., 44 (2015) 127-145.
[188]
B. Zhang, W. Zuo, Learning from positive and unlabeled examples: a survey, 2008.
[189]
J. Wu, X. Zhu, C. Zhang, Z. Cai, Multi-instance learning from positive and unlabeled bags, 2014.
[190]
H. Bao, T. Sakai, I. Sato, M. Sugiyama, Risk minimization framework for multiple instance learning from positive and unlabeled bags, CoRR, abs/1704.06767 (2017).
[191]
J. Wu, S. Pan, X. Zhu, C. Zhang, X. Wu, Positive and unlabeled multi-graph learning, IEEE Trans. Cybern., 47 (2017) 818-829.
[192]
P. Branco, L. Torgo, R.P. Ribeiro, A survey of predictive modeling on imbalanced domains, ACM Comput. Surv., 49 (2016) 31:1-31:50.
[193]
N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique, J. Artif. Int. Res., 16 (2002) 321-357.
[194]
C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, A. Napolitano, RUSBoost: a hybrid approach to alleviating class imbalance, IEEE Trans. Syst. Man Cybern. Part A Syst. Humans, 40 (2010) 185-197.
[195]
T. Imam, K.M. Ting, J. Kamruzzaman, z-SVM: an SVM for improved classification of imbalanced data, 2006.
[196]
K. Veropoulos, C. Campbell, N. Cristianini, Controlling the sensitivity of support vector machines, 1999.
[197]
J. Meessen, X. Desurmont, J.F. Delaigle, C.D. Vleeschouwer, B. Macq, Progressive learning for interactive surveillance scenes retrieval, 2007.
[198]
J. Melendez, B. van Ginneken, P. Maduskar, R.H.H.M. Philipsen, H. Ayles, C.I. Snchez, On combining multiple-instance learning and active learning for computer-aided detection of tuberculosis, IEEE Trans. Med. Imaging, 35 (2016) 1013-1024.
[199]
D. Zhang, F. Wang, Z. Shi, C. Zhang, Interactive localized content based image retrieval with multiple-instance active learning, Pattern Recognit., 43 (2010) 478-484.
[200]
Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 1798-1828.
[201]
J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Discriminative learned dictionaries for local image analysis, 2008.
[202]
H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin, Exploring strategies for training deep neural networks, J. Mach. Learn. Res., 10 (2009) 1-40.
[203]
A. Hauptmann, R. Yan, W.H. Lin, M. Christel, H. Wactlar, Can high-level concepts fill the semantic gap in video retrieval? A case study with broadcast news, IEEE Trans. Multimed., 9 (2007) 958-966.
[204]
L.-j. Li, H. Su, L. Fei-fei, E.P. Xing, Object bank: a high-level image representation for scene classification & semantic feature sparsification, 2010.
[205]
S. Sadanand, J.J. Corso, Action bank: a high-level representation of activity in video, 2012.
[206]
F. Ringeval, A. Sonderegger, J. Sauer, D. Lalanne, Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions, 2013.
[207]
M. Merler, B. Huang, L. Xie, G. Hua, A. Natsev, Semantic model vectors for complex video event recognition, IEEE Trans. Multimed., 14 (2012) 88-101.
[208]
K. Tang, B. Yao, L. Fei-Fei, D. Koller, Combining the right features for complex event recognition, 2013.
[209]
J. Wu, X. Zhu, C. Zhang, Z. Cai, Multi-instance multi-graph dual embedding learning, 2013.
[210]
J. Wu, Z. Hong, S. Pan, X. Zhu, Z. Cai, C. Zhang, Exploring features for complicated objects: cross-view feature selection for multi-instance learning, 2014.
[211]
B. Wu, E. Zhong, A. Horner, Q. Yang, Music emotion recognition by multi-label multi-layer multi-instance multi-view learning, 2014.
[212]
C.-T. Nguyen, D.-C. Zhan, Z.-H. Zhou, Multi-modal image annotation with multi-instance multi-label LDA, 2013.
[213]
H. Daum III, Frustratingly easy domain adaptation, CoRR abs/0907.1815 (2009). arXiv preprint arxiv.org/abs/0907.1815.

Cited By

View all
  • (2024)Exploiting Instance-level Relationships in Weakly Supervised Text-to-Video RetrievalACM Transactions on Multimedia Computing, Communications, and Applications10.1145/366357120:10(1-21)Online publication date: 12-Sep-2024
  • (2024)Multiple-instance Learning from Triplet Comparison BagsACM Transactions on Knowledge Discovery from Data10.1145/363877618:4(1-18)Online publication date: 12-Feb-2024
  • (2024)Weakly Supervised AUC Optimization: A Unified Partial AUC ApproachIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.335781446:7(4780-4795)Online publication date: 24-Jan-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Pattern Recognition
Pattern Recognition  Volume 77, Issue C
May 2018
415 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 May 2018

Author Tags

  1. Classification
  2. Computer aided diagnosis
  3. Computer vision
  4. Document classification
  5. Drug activity prediction
  6. Multi-instance learning
  7. Multiple instance learning
  8. Weakly supervised learning

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Exploiting Instance-level Relationships in Weakly Supervised Text-to-Video RetrievalACM Transactions on Multimedia Computing, Communications, and Applications10.1145/366357120:10(1-21)Online publication date: 12-Sep-2024
  • (2024)Multiple-instance Learning from Triplet Comparison BagsACM Transactions on Knowledge Discovery from Data10.1145/363877618:4(1-18)Online publication date: 12-Feb-2024
  • (2024)Weakly Supervised AUC Optimization: A Unified Partial AUC ApproachIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.335781446:7(4780-4795)Online publication date: 24-Jan-2024
  • (2024)TA-NET: Empowering Highly Efficient Traffic Anomaly Detection Through Multi-Head Local Self-Attention and Adaptive Hierarchical Feature ReconstructionIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2024.336582025:9(12372-12384)Online publication date: 1-Sep-2024
  • (2024)Federated learning for medical image analysisPattern Recognition10.1016/j.patcog.2024.110424151:COnline publication date: 1-Jul-2024
  • (2024)Deep anomaly detection on set dataPattern Recognition10.1016/j.patcog.2024.110381151:COnline publication date: 1-Jul-2024
  • (2024)Superpixel-based multi-scale multi-instance learning for hyperspectral image classificationPattern Recognition10.1016/j.patcog.2024.110257149:COnline publication date: 1-May-2024
  • (2024)Introducing instance label correlation in multiple instance learning. Application to cancer detection on histopathological imagesPattern Recognition10.1016/j.patcog.2023.110057146:COnline publication date: 1-Feb-2024
  • (2024)A survey on intelligent management of alerts and incidents in IT servicesJournal of Network and Computer Applications10.1016/j.jnca.2024.103842224:COnline publication date: 1-Apr-2024
  • (2024)A deep multiple-instance text binary classification for topic relevant content extraction on social mediaJournal of King Saud University - Computer and Information Sciences10.1016/j.jksuci.2023.10188336:1Online publication date: 17-Apr-2024
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media