Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Possibilistic fuzzy co-clustering of large document collections

Published: 01 December 2007 Publication History

Abstract

In this paper we propose a new co-clustering algorithm called possibilistic fuzzy co-clustering (PFCC) for automatic categorization of large document collections. PFCC integrates a possibilistic document clustering technique and a combined formulation of fuzzy word ranking and partitioning into a fast iterative co-clustering procedure. This novel framework brings about simultaneously some benefits including robustness in the presence of document and word outliers, rich representations of co-clusters, highly descriptive document clusters, a good performance in a high-dimensional space, and a reduced sensitivity to the initialization in the possibilistic clustering. We present the detailed formulation of PFCC together with the explanations of the motivations behind. The advantages over other existing works and the algorithm's proof of convergence are provided. Experiments on several large document data sets demonstrate the effectiveness of PFCC.

References

[1]
A. Gulli, A. Signorini, The indexable web is more than 11.5 billion pages, in: Fourteenth International World Wide Web Conference, 2005, pp. 902-903.
[2]
Xu, R. and Wunsch, D., Survey of clustering algorithms. IEEE Trans. Neural Networks. v16 i3. 645-678.
[3]
Han, J. and Kamber, M., Data Mining: Concepts and Techniques. 2000. first ed. Morgan Kaufmann, Los Altos, CA.
[4]
M. Steinbach, G. Karypis, V. Kumar, A comparison of document clustering techniques, Technical Report, Department of Computer Science and Engineering, University of Minnesota, 2000.
[5]
W. Xu, Y. Gong, Document clustering by concept factorization, in: Twenty-seventh International ACM SIGIR Conference on Research and Development in Information Retrieval, 2004, pp. 202-209.
[6]
T. Li, S. Ma, M. Ogihara, Document clustering via adaptive subspace iteration, in: Twenty-seventh International ACM SIGIR Conference on Research and Development in Information Retrieval, 2004, pp. 218-225.
[7]
Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms. 1981. Plenum, New York.
[8]
S. Miyamoto, M. Mukaidono, Fuzzy c-means as a regularization and maximum entropy approach, in: Seventh IFSA World Congress, 1997, pp. 86-92.
[9]
Rose, K., Gurewitz, E. and Fox, G.C., Statistical mechanics and phase transitions in clustering. Phys. Rev. Lett. v65 i8. 945-949.
[10]
Jaynes, E.T., Information theory and statistical mechanics. Phys. Rev. v106. 620-630.
[11]
Yu, J., General c-means clustering model. IEEE Trans. Pattern Anal. Mach. Intell. v27 i8. 1197-1211.
[12]
Groll, L. and Jakel, J., A new convergence proof of fuzzy c-means. IEEE Trans. Fuzzy Systems. v13 i5. 717-720.
[13]
M.E.S. Mendes, L. Sacks, Evaluating fuzzy clustering for relevance-based information access, in: Twelfth IEEE International Conference on Fuzzy Systems, vol. 1, 2003, pp. 648-653.
[14]
Krishnapuram, R. and Keller, J.M., Possibilistic approach to clustering. IEEE Trans. Fuzzy Systems. v1 i2. 98-110.
[15]
Krishnapuram, R. and Keller, J.M., The possibilistic c-means algorithm: insights and recommendations. IEEE Trans. Fuzzy Systems. v4 i3. 383-395.
[16]
Barni, M., Cappellini, V. and Mecocci, A., Comments on 'a possibilistic approach to clustering'. IEEE Trans. Fuzzy Systems. v4. 393-396.
[17]
Timm, H., Borgelt, C., Doring, C. and Kruse, R., An extension to possibilistic fuzzy cluster analysis. Fuzzy Sets and Systems. v147 i1. 3-16.
[18]
Pal, N.R., Pal, K., Keller, J.M. and Bezdek, J.C., A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Systems. v13 i4. 517-530.
[19]
Zhang, J.s. and Leung, Y.-W., Improved possibilistic c-means clustering algorithms. IEEE Trans. Fuzzy Systems. v12 i2. 209-217.
[20]
F. Masulli, S. Rovetta, The graded possibilistic clustering model, in: International Joint Conference on Neural Networks, 2003, pp. 791-796.
[21]
O. Nasraoui, R. Krishnapuram, Improved possibilistic c-means algorithm with finite rejection and robust scale estimation, in: Annual Conference of the NAFIPS, 1996, pp. 395-399.
[22]
A. Tanay, R. Sharan, R. Shamir, Biclustering algorithms: a survey, in: A. Srinivas (Ed.), Handbook of Computational Molecular Biology, vol. 9, 2005, pp. 26.1-26.17.
[23]
Madeira, S.C. and Oliveira, A.L., Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinformatics. v1. 24-25.
[24]
H. Cho, I.S. Dhillon, Y. Guan, S. Sra, Minimum sum-squared residues co-clustering of gene expression data, in: Fourth SIAM International Conference on Data Mining, 2004, pp. 114-125.
[25]
I.S. Dhillon, S. Mallela, D.S. Modha, Information-theoretic co-clustering, in: Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 89-98.
[26]
Tjhi, W.C. and Chen, L., A partitioning-based algorithm to fuzzy co-cluster documents and words. Pattern Recognition Lett. v27. 151-159.
[27]
C.-H. Oh, K. Honda, H. Ichihashi, Fuzzy clustering for categorical multivariate data, in: Joint Ninth IFSA World Congress and Twentieth NAFIPS International Conference, vol. 4, 2001, pp. 2154-2159.
[28]
N. Tishby, F. Pereira, W. Bialek, The information bottleneck method, in: Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing, 1999, pp. 368-377.
[29]
I.S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning, in: Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 269-274.
[30]
B. Gao, T.-Y. Liu, X. Zheng, Q.-S. Cheng, W.-Y. Ma, Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering, in: Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2005, pp. 41-50.
[31]
B. Mandhani, S. Joshi, K. Kummamuru, A matrix density based algorithm to hierarchically co-cluster documents and words, in: Twelfth International Conference on World Wide Web, 2003, pp. 511-518.
[32]
B. Long, Z.M. Zhang, P.S. Yu, Co-clustering by block value decomposition, in: Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2005, pp. 635-640.
[33]
K. Kummamuru, A. Dhawale, R. Krishnapuram, Fuzzy co-clustering of documents and keywords, in: Twelfth IEEE International Conference on Fuzzy Systems, vol. 2, 2003, pp. 772-777.
[34]
H. Frigui, O. Nasraoui, Simultaneous clustering and dynamic keyword weighting for text documents, in: M.W. Berry (Ed.), Survey of Text Mining, Springer, Berlin, 2004, pp. 45-72.
[35]
W.C. Tjhi, L. Chen, A new fuzzy co-clustering algorithm for categorization of data sets with overlapping clusters, in: X. Li, O.R. Zaiane, Z. Li (Eds.), Second International Conference on Advanced Data Mining and Applications, 2006, pp. 328-339.
[36]
M. Sinka, D. Corne, A large benchmark data set for web document clustering, in: Soft Computing Systems: Design, Management and Applications, Frontiers in Artificial Intelligence and Applications, vol. 87, IOS Pr Inc, 2002, pp. 881-890.
[37]
I.S. Dhillon, J. Fan, Y. Guan, Efficient clustering of very large document collections, in: V. Kumar, R. Grossman, C. Kamath, R. Namburu (Eds.), Data Mining for Scientific and Engineering Applications, Kluwer Academic Publishers, Dordrecht, 2001 (Invited Book Chapter).
[38]
Salton, G. and Buckley, C., Term-weighting approaches in automatic text retrieval. Inf. Process. Management Int. J. v24 i5. 513-523.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Pattern Recognition
Pattern Recognition  Volume 40, Issue 12
December, 2007
441 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 December 2007

Author Tags

  1. Co-clustering
  2. Document clustering
  3. Fuzzy clustering
  4. Information retrieval
  5. Possibilistic clustering
  6. Text mining

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Survey of Co-ClusteringACM Transactions on Knowledge Discovery from Data10.1145/368179318:9(1-28)Online publication date: 25-Jul-2024
  • (2017)Feature-reduction fuzzy co-clustering algorithm for hyperspectral image segmentation2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)10.1109/FUZZ-IEEE.2017.8015643(1-6)Online publication date: 9-Jul-2017
  • (2017)Credibilistic clustering algorithms via alternating cluster estimationJournal of Intelligent Manufacturing10.1007/s10845-014-1004-628:3(727-738)Online publication date: 1-Mar-2017
  • (2017)Effective fuzzy possibilistic c-meansSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-016-2198-721:11(2835-2845)Online publication date: 1-Jun-2017
  • (2016)Interval-valued fuzzy set approach to fuzzy co-clustering for data classificationKnowledge-Based Systems10.1016/j.knosys.2016.05.049107:C(1-13)Online publication date: 1-Sep-2016
  • (2015)Effective Fuzzy Possibilistic C-MeansProceedings of the ASE BigData & SocialInformatics 201510.1145/2818869.2818870(1-5)Online publication date: 7-Oct-2015
  • (2013)High performance genetic algorithm based text clustering using parts of speech and outlier eliminationApplied Intelligence10.1007/s10489-012-0382-838:4(511-519)Online publication date: 1-Jun-2013
  • (2013)Semi-supervised fuzzy co-clustering algorithm for document categorizationKnowledge and Information Systems10.1007/s10115-011-0454-934:1(55-74)Online publication date: 1-Jan-2013
  • (undefined)Interval type-2 fuzzy co-clustering algorithm2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)10.1109/FUZZ-IEEE.2015.7337960(1-7)

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media