Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

iKnow

Published: 01 September 2017 Publication History

Abstract

We present iKnow, an ontology-driven framework for semantic situation understanding in pervasive multi-sensor environments for human activity recognition. iKnow capitalises on the use of OWL ontological knowledge to capture domain relationships between low-level observations and high-level activities, while context aggregation and activity interpretation are supported through context-aware fusion. Rather than using ontologies as highly-structured, strict contextual models, our aim is to capture abstract dependencies among low- and high-level concepts, such as locations and objects involved in activities, towards addressing practical real-world challenges in the domain. The framework has been applied in the eminent field of healthcare, providing the models for the semantic enrichment and fusion of heterogeneous multisensory descriptors for monitoring the behaviour of people with Alzheimers disease.

References

[1]
C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan, D. Riboni, A survey of context modelling and reasoning techniques, Pervasive Mob. Comput., 6 (2010) 161-180.
[2]
D.J. Cook, J.C. Augusto, V.R. Jakkula, Ambient intelligence: Technologies, applications, and opportunities, Pervasive Mob. Comput., 5 (2009) 277-298.
[3]
T. Tiberghien, M. Mokhtari, H. Aloulou, J. Biswas, Semantic reasoning in context-aware assistive environments to support ageing with dementia, in: 11th International Conference on the Semantic Web - Volume Part II, ISWC12, 2012, pp. 212227.
[4]
C. Golbreich, E.K. Wallace, OWL 2 Web Ontology Language, New Features and Rationale, second ed., W3C Recommendation, 11 December 2012, 2012. URL http://www.w3.org/TR/owl2-new-features/.
[5]
T. Eiter, G. Ianni, T. Krennwallner, A. Polleres, Rules and ontologies for the semantic web, in: Reasoning Web, 2008, pp. 1-53.
[6]
B. Motik, B. CuencaGrau, U. Sattler, Structured objects in OWL: representation and reasoning, in: WWW, 2008, pp. 555-564.
[7]
A. Gangemi, DOLCE Ultralite ontology, 2010. URL http://www.ontologydesignpatterns.org/ont/dul/DUL.owl.
[8]
H. Knublauch, J.A. Hendler, K. Idehen, 2011.
[9]
B.C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, U. Sattler, OWL 2: The next step for OWL, Web Semant. Sci. Serv. Agents World Wide Web, 6 (2008) 309-322.
[10]
M. Schneider, S. Rudolph, G. Sutcliffe, Modeling in OWL 2 without restrictions, in: Proceedings of the 10th International Workshop on OWL: Experiences and Directions, Co-Located with 10th Extended Semantic Web Conference, 2013.
[11]
The Description Logic Handbook: Theory, Implementation, and Applications, in:, Cambridge University Press, 2003.
[12]
I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, Tech. Rep., National Research Council of Canada, Network Inference, and Stanford University, 2004.
[13]
D. Riboni, C. Bettini, OWL 2 modeling and reasoning with complex human activities, Pervasive Mob. Comput., 7 (2011) 379-395.
[14]
L. Chen, C.D. Nugent, Ontology-based activity recognition in intelligent pervasive environments, Int. J. Web Inf. Syst., 5 (2009) 410-430.
[15]
D. Riboni, C. Bettini, Context provenance to enhance the dependability of ambient intelligence systems, Pers. Ubiquit. Comput., 16 (2012) 799-818.
[16]
G. Okeyo, L. Chen, H. Wang, R. Sterritt, Dynamic sensor data segmentation for real-time knowledge-driven activity recognition, Pervasive Mob. Comput., 10, Part B (2014) 155-172.
[17]
L. Chen, C.D. Nugent, H. Wang, A knowledge-driven approach to activity recognition in smart homes, IEEE Trans. Knowl. Data Eng., 24 (2012) 961-974.
[18]
D. Riboni, L. Pareschi, L. Radaelli, C. Bettini, Is ontology-based activity recognition really effective?, in: Pervasive Comput. Commun., 2011, pp. 427-431.
[19]
G. Okeyo, L. Chen, W. Hui, R. Sterritt, A hybrid ontological and temporal approach for composite activity modelling, in: TrustCom, 2012, pp. 1763-1770.
[20]
P. Roy, A possibilistic approach for activity recognition in smart homes for cognitive assistance to Alzheimers patients, in: Activity Recognition in Pervasive Intelligent Environments, vol. 4, 2011, pp. 33-58.
[21]
T. Patkos, I. Chrysakis, A. Bikakis, D. Plexousakis, G. Antoniou, A reasoning framework for ambient intelligence, in: 6th Hellenic Conf. on Artificial Intelligence, 2010, pp. 213222.
[22]
J. Ye, G. Stevenson, Semantics-driven multi-user concurrent activity recognition, in: Ambient Intelligence, Springer International Publishing, 2013, pp. 204-219.
[23]
M. Wessel, M. Luther, M. Wagner, The difference a day makes - recognizing important events in daily context logs, in: C&O:RR, 2007.
[24]
S. Zhang, P. McCullagh, C. Nugent, H. Zheng, An ontology-based context-aware approach for behaviour analysis, in: Activity Recognition in Pervasive Intelligent Environments, vol. 4, 2011, pp. 127-148.
[25]
D. Anicic, P. Fodor, S. Rudolph, N. Stojanovic, EP-SPARQL: a unified language for event processing and stream reasoning, in: Proceedings of the 20th International Conference on WWW, 2011, pp. 635644.
[26]
D. Barbieri, D. Braga, S. Ceri, E. DellaValle, M. Grossniklaus, C-SPARQL: A continuous query language for RDF data streams, Int. J. Semant. Comput., 4 (2010).
[27]
G. Meditskos, S. Dasiopoulou, V. Efstathiou, I. Kompatsiaris, SP-ACT: A hybrid framework for complex activity recognition combining OWL and SPARQL rules, in: PerCom Workshops, 2013, pp. 2530.
[28]
T. Moser, H. Roth, S. Rozsnyai, R. Mordinyi, S. Biffl, Semantic event correlation using ontologies, in: OTM To Meaningful Internet Systems, 2009, pp. 1087-1094.
[29]
K. Teymourian, A. Paschke, Semantic rule-based complex event processing, in: Rule Interchange and Applications, Springer, Berlin, Heidelberg, 2009, pp. 82-92.
[30]
K. Teymourian, M. Rohde, A. Paschke, Fusion of background knowledge and streams of events, in: Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems, 2012, pp. 302313.
[31]
J. Wan, M.J. OGrady, G. M.P. OHare, Dynamic sensor event segmentation for real-time activity recognition in a smart home context, Pers. Ubiquit. Comput., 19 (2015) 287-301.
[32]
J. Lester, T. Choudhury, N. Kern, G. Borriello, B. Hannaford, A hybrid discriminative/generative approach for modeling human activities, in: Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI05, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005, pp. 766-772.
[33]
D. Riboni, C. Bettini, G. Civitarese, Z.H. Janjua, R. Helaoui, SmartFABER: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment, Artif. Intell. Med., 67 (2016) 57-74.
[34]
E.M. Tapia, S.S. Intille, K. Larson, Activity recognition in the home using simple and ubiquitous sensors, in: Pervasive Computing: Second International Conference, PERVASIVE 2004, Linz/Vienna, Austria, April 2123, 2004. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 158-175.
[35]
T.v. Kasteren, B. Krose, Bayesian activity recognition in residence for elders, in: 2007 3rd IET International Conference on Intelligent Environments, 2007, pp. 209212.
[36]
L. Atallah, G.-Z. Yang, Review: The use of pervasive sensing for behaviour profiling - a survey, Pervasive Mob. Comput., 5 (2009) 447-464.
[37]
A. Calatroni, D. Roggen, G. Trster, Collection and curation of a large reference dataset for activity recognition, in: Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on, IEEE, 2011, pp. 30-35.
[38]
R. Helaoui, D. Riboni, H. Stuckenschmidt, A probabilistic ontological framework for the recognition of multilevel human activities, in: Int. Conference on Pervasive and Ubiquitous Computing, 2013, pp. 345354.
[39]
G. Okeyo, L. Chen, H. Wang, R. Sterritt, Ontology-based learning framework for activity assistance in an adaptive smart home, in: Activity Recognition in Pervasive Intelligent Environments, vol. 4, 2011, pp. 237-263.
[40]
D. Riboni, C. Bettini, Context-aware activity recognition through a combination of ontological and statistical reasoning, in: 6th International Conference on Ubiquitous Intelligence and Computing, 2009, pp. 3953.
[41]
D. Riboni, C. Bettini, COSAR: hybrid reasoning for context-aware activity recognition, Pers. Ubiquit. Comput., 15 (2011) 271-289.
[42]
D. Riboni, C. Bettini, G. Civitarese, Z.H. Janjua, R. Helaoui, Extended report: Fine-grained recognition of abnormal behaviors for early detection of mild cognitive impairment, CoRR (2015). abs/1501.05581
[43]
J. Ye, G. Stevenson, S. Dobson, USMART: An unsupervised semantic mining activity recognition technique, ACM Trans. Interact. Intell. Syst., 4 (2014) 16:1-16:27.
[44]
D. Riboni, T. Sztyler, G. Civitarese, H. Stuckenschmidt, Unsupervised recognition of interleaved activities of daily living through ontological and probabilistic reasoning, in: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp16, ACM, New York, NY, USA, 2016, pp. 1-12.
[45]
G. Meditskos, E. Kontopoulos, I. Kompatsiaris, Knowledge-driven activity recognition and segmentation using context connections, in: 13th International Semantic Web Conference, ISWC, 2014, pp. 260275.
[46]
P. Palmes, Object relevance weight pattern mining for activity recognition and segmentation, Pervasive. Mob. Comput., 6 (2010) 43-57.
[47]
X. Hong, C.D. Nugent, M.D. Mulvenna, S. Martin, S. Devlin, J.G. Wallace, Dynamic similarity-based activity detection and recognition within smart homes, Int. J. Pervasive Comput. Commun., 8 (2012) 264-278.
[48]
R. Shaw, R. Troncy, L. Hardman, LODE: Linking open descriptions of events, in: 4th Asian Conference on the Semantic Web, Shanghai, China, 2009, pp. 153167.
[49]
M. Doerr, The CIDOC conceptual reference module: An ontological approach to semantic interoperability of metadata, AI Mag., 24 (2003) 75-92.
[50]
J. Ye, S. Dobson, S. McKeever, Situation identification techniques in pervasive computing: A review, Pervasive Mob. Comput., 8 (2012) 36-66.
[51]
A. Gangemi, P. Mika, Understanding the semantic web through descriptions and situations, in: Proceedings of the International Conference on Ontologies, Databases and Applications of Semantics, 2003, pp. 689-706.
[52]
A. Scherp, T. Franz, C. Saathoff, S. Staab, FA model of events based on the foundational ontology Dolce+DnS Ultralight, in: Proceedings of the Fifth International Conference on Knowledge Capture, K-CAP09, ACM, New York, NY, USA, 2009, pp. 137-144.
[53]
I. Depraetere, (A)telicity and intentionality, Linguistics, 45 (2007) 243-269.
[54]
M. Kaltsa, The Acquisition of Relicity in the Native Language (Ph.D. thesis), School of English, Aristotle University Of Thessaloniki, Greece, 2012.
[55]
G. Singla, D.J. Cook, M. Schmitter-Edgecombe, Tracking activities in complex settings using smart environment technologies, Int. J. Biosci. Psychiatry Technol., 1 (2009) 25.
[56]
T. VanKasteren, A. Noulas, G. Englebienne, B. Krse, Accurate activity recognition in a home setting, in: Proceedings of the 10th International Conference on Ubiquitous Computing, ACM, 2008, pp. 1-9.
[57]
A.K. Jain, R.C. Dubes, Prentice-Hall, Upper Saddle River, USA, 1988.
[58]
T.G. Stavropoulos, G. Meditskos, I. Kompatsiaris, DemaWare2: Integrating sensors, multimedia and semantic analysis for the ambient care of dementia, Pervasive Mob. Comput., 34 (2017) 126-145.
[59]
G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, E.M. Stadlan, Clinical diagnosis of Alzheimers disease report of the nincds-adrda work group* under the auspices of department of health and human services task force on Alzheimers disease, Neurology, 34 (1984) 939-944.
[60]
R.C. Petersen, G.E. Smith, S.C. Waring, R.J. Ivnik, E.G. Tangalos, E. Kokmen, Mild cognitive impairment: clinical characterization and outcome, Arch. Neurol., 56 (1999) 303-308.
[61]
T. van Kasteren, G. Englebienne, B. Krse, Human activity recognition from wireless sensor network data: Benchmark and software, in: Activity Recognition in Pervasive Intelligent Environments, 2011, pp. 165-186.
[62]
K. Avgerinakis, A. Briassouli, Y. Kompatsiaris, Activity detection using sequential statistical boundary detection (ssbd), Comput. Vis. Image Underst., 144 (2016) 46-61.
[63]
A. Gaidon, Z. Harchaoui, C. Schmid, Actom sequence models for efficient action detection, in: Computer Vision and Pattern Recognition, IEEE, 2011, pp. 3201-3208.
[64]
S. Ma, J. Zhang, N. Ikizler-Cinbis, S. Sclaroff, Action recognition and localization by hierarchical space-time segments, in: Proceedings of the 2013 IEEE International Conference on Computer Vision, ICCV13, 2013, pp. 27442751.
[65]
I. Lazarou, A. Karakostas, T.G. Stavropoulos, T. Tsompanidis, G. Meditskos, I. Kompatsiaris, M. Tsolaki, A novel and intelligent home monitoring system for care support of elders with cognitive impairment, J. Alzheimers Disease, 54 (2016) 1561-1591.
[66]
F. Maier, D. Nute, Well-founded semantics for defeasible logic, Synthese, 176 (2010) 243-274.

Cited By

View all
  • (2023)TAOProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36108967:3(1-32)Online publication date: 27-Sep-2023
  • (2023)MitesProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/35808657:1(1-32)Online publication date: 28-Mar-2023
  • (2023)Ontology-based hybrid commonsense reasoning framework for handling context abnormalities in uncertain and partially observable environmentsInformation Sciences: an International Journal10.1016/j.ins.2023.02.078631:C(468-486)Online publication date: 1-Jun-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Pervasive and Mobile Computing
Pervasive and Mobile Computing  Volume 40, Issue C
September 2017
723 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 September 2017

Author Tags

  1. Activity recognition
  2. Context
  3. Fusion
  4. Ontologies
  5. Situational awareness

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)TAOProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36108967:3(1-32)Online publication date: 27-Sep-2023
  • (2023)MitesProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/35808657:1(1-32)Online publication date: 28-Mar-2023
  • (2023)Ontology-based hybrid commonsense reasoning framework for handling context abnormalities in uncertain and partially observable environmentsInformation Sciences: an International Journal10.1016/j.ins.2023.02.078631:C(468-486)Online publication date: 1-Jun-2023
  • (2022)Hybrid approach for anticipating human activities in Ambient Intelligence environments2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)10.1109/CASE49997.2022.9926669(2006-2011)Online publication date: 20-Aug-2022
  • (2022)Real-time ontology-based context-aware situation reasoning framework in pervasive computingMultimedia Tools and Applications10.1007/s11042-022-12252-081:11(14913-14957)Online publication date: 1-May-2022
  • (2021)Collaborative activity recognition with heterogeneous activity sets and privacy preferencesJournal of Ambient Intelligence and Smart Environments10.3233/AIS-21001813:6(433-452)Online publication date: 1-Jan-2021
  • (2021)Ontologies of Action and Object in Home Environment towards Injury PreventionProceedings of the 10th International Joint Conference on Knowledge Graphs10.1145/3502223.3502239(126-130)Online publication date: 6-Dec-2021
  • (2021)Towards Representation of Daily Living Activities by Reusing ICF CategoriesHuman Aspects of IT for the Aged Population. Supporting Everyday Life Activities10.1007/978-3-030-78111-8_30(438-450)Online publication date: 24-Jul-2021
  • (2020)Daily Activity Feature Selection in Smart Homes Based on Pearson Correlation CoefficientNeural Processing Letters10.1007/s11063-019-10185-851:2(1771-1787)Online publication date: 7-Jan-2020
  • (2019)A human-like description of scene events for a proper UAV-based video content analysisKnowledge-Based Systems10.1016/j.knosys.2019.04.026178:C(163-175)Online publication date: 15-Aug-2019
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media