Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Multispectral and hyperspectral image fusion based on low-rank unfolding network

Published: 01 December 2023 Publication History

Abstract

Recently, deep unfolding networks (DUNs) have been applied to the fusion of low spatial resolution hyperspectral (LR HS) and high spatial resolution multispectral (HR MS) images and achieved satisfactory high spatial resolution hyperspectral (HR HS) images. However, the low-rank and sparse priors in these networks are not exploited sufficiently. In this paper, we establish an LR HS and HR MS image fusion model based on robust principal component analysis (RPCA), which simultaneously captures the low-rank and sparse properties in HS images. Then, the fusion model is optimized with the alternating direction method of multipliers (ADMM). To make full use of the representation capacity of DUNs, we unfold the derived ADMM algorithm as a network, named low-rank unfolding network (LRU-Net). Specifically, each iteration in ADMM is unfolded as one stage in LRU-Net, in which the low-rank and sparse priors are learned by singular value thresholding (SVT) and sparse module, respectively. Finally, all features from all stages are integrated to produce the desired HR HS image. Three benchmark datasets were chosen for comparison to demonstrate the effectiveness of the proposed LRU-Net. The experimental results demonstrate that LRU-Net performs better in terms of both qualitative and quantitative results compared to state-of-the-art fusion methods. The source code is publicly available at https://github.com/RSMagneto/LRU-Net.

Highlights

An RPCA-based image fusion model is built and optimized to produce HR HS images.
LRU-Net is constructed by unfolding the optimization of the RPCA-based fusion model.
Experiments on three datasets show the effectiveness of the proposed LRU-Net.

References

[1]
Vincent F., Besson O., Target detection in hyperspectral imaging combining replacement and additive models, Signal Process. 188 (2021).
[2]
Yang J., Zhao Y., Chan J., Learning and transferring deep joint spectral-spatial features for hyperspectral classification, IEEE Trans. Geosci. Remote Sens. 55 (8) (2017) 4729–4742.
[3]
Xiong F., Zhou J., Qian Y., Material based object tracking in hyperspectral videos, IEEE Trans. Image Process. 29 (2020) 3719–3733.
[4]
Dian R., Li S., Sun B., Guo A., Recent advances and new guidelines on hyperspectral and multispectral image fusion, Inf. Fusion 69 (2021) 40–51.
[5]
Yang J., Zhao Y., Chan J., Hyperspectral and multispectral image fusion via deep two-branches convolutional neural network, Remote Sens. 10 (5) (2018) 800.
[6]
Yang J., Xiao L., Zhao Y., et al., Unsupervised deep tensor network for hyperspectral-multispectral image fusion, IEEE Trans. Neural Netw. Learn. Syst. (2023).
[7]
Zhang K., Zhang F., Wan W., Yu H., et al., Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead, Inf. Fusion 93 (2023) 227–242.
[8]
Xiang Z., Xiao L., Yang J., Liao W., Philips W., Detail-injection-model-inspired deep fusion network for pansharpening, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–15.
[9]
Wang Y., Liu G., Wei L., Yang L., Xu L., A method to improve full-resolution remote sensing pansharpening image quality assessment via feature combination, Signal Process. 208 (2023).
[10]
Hou S., Xiao S., Dong W., Qu J., Multi-level features fusion via cross-layer guided attention for hyperspectral pansharpening, Neurocomputing 506 (2022) 380–392.
[11]
Vivone G., Garzelli A., Xu Y., Liao W., Chanussot J., Panchromatic and hyperspectral image fusion: Outcome of the 2022 WHISPERS hyperspectral pansharpening challenge, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 16 (2023) 166–179.
[12]
Li S., Dian R., Fang L., Bioucas-Dias J., Fusing hyperspectral and multispectral images via coupled sparse tensor factorization, IEEE Trans. Image Process. 27 (8) (2018) 4118–4130.
[13]
Dian R., Li S., Fang L., Learning a low tensor-train rank representation for hyperspectral image super-resolution, IEEE Trans. Neural Netw. Learn. Syst. 30 (9) (2019) 2672–2683.
[14]
Zeng H., Xue J., Philips W., Multi-modal core tensor factorization based low-rankness and its applications to tensor completion, IEEE Trans. Multimedia (2022).
[15]
Zhang X., Huang W., Wang Q., Li X., SSR-NET: Spatial-spectral reconstruction network for hyperspectral and multispectral image fusion, IEEE Trans. Geosci. Remote Sens. 59 (7) (2021) 5953–5965.
[16]
Wang X., Chen J., Wei Q., Richard C., Hyperspectral image super-resolution via deep prior regularization with parameter estimation, IEEE Trans. Circuits Syst. Video Technol. 32 (4) (2022) 1708–1723.
[17]
Shen D., Liu J., Wu Z., Yang J., Xiao L., ADMM-HFNet: A matrix decomposition-based deep approach for hyperspectral image fusion, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[18]
Boyd S., Parikh N., Chu E., Peleato B., Eckstein J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn. 3 (1) (2011) 1–122.
[19]
Xie Q., Zhou M., Zhao Q., Xu Z., Meng D., MHF-Net: An interpretable deep network for multispectral and hyperspectral image fusion, IEEE Trans. Pattern Anal. Mach. Intell. 44 (3) (2022) 1457–1473.
[20]
Liu J., Shen D., Wu Z., Xiao L., Sun J., Yan H., Patch-aware deep hyperspectral and multispectral image fusion by unfolding subspace-based optimization model, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 15 (2022) 1024–1038.
[21]
Candès E.J., Li X., Ma Y., Wright J., Robust principal component analysis?, J. ACM 58 (1) (2009) 1–37.
[22]
Zhang H., Chen H., Yang G., et al., LR-Net: Low-rank spatial–spectral network for hyperspectral image denoising, IEEE Trans. Image Process. 30 (2021) 8743–8758.
[23]
Oh T., Matsushita Y., Tai Y., et al., Fast randomized singular value thresholding for low-rank optimization, IEEE Trans. Pattern Anal. Mach. intell. 40 (2) (2017) 376–391.
[24]
Yasuma F., Mitsunaga T., Iso D., Nayar S., Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum, IEEE Trans. Image Process. 19 (9) (2010) 2241–2253.
[25]
A. Chakrabarti, T. Zickler, Statistics of real-world hyperspectral images, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit, 2019, pp. 193–200.
[26]
Zhang F., Zhang K., Sun J., Feng Z., Wan W., Wu Q., Hyperspectral image denoising using 3-D geometrical kernel with local similarity prior, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14 (2021) 3303–3317.
[27]
Chen Z., Pu H., Wang B., Jiang G., Fusion of hyperspectral and multispectral images: A novel framework based on generalization of pan-sharpening methods, IEEE Geosci. Remote Sens. Lett. 11 (8) (2014) 1418–1422.
[28]
Yokoya N., Yairi T., Iwasaki A., Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion, IEEE Trans. Geosci. Remote Sens. 50 (2) (2012) 528–537.
[29]
C. Lanaras, E. Baltsavias, K. Schindler, Hyperspectral super-resolution by coupled spectral unmixing, in: Proc. IEEE Int. Conf. Comput. Vis, 2015, pp. 3586–3594.
[30]
Dian R., Li S., Fang L., Wei Q., Multispectral and hyperspectral image fusion with spatial–spectral sparse representation, Inf. Fusion 49 (2019) 262–270.
[31]
Nezhad Z.H., Karami A., Heylen R., Scheunders P., Fusion of hyperspectral and multispectral images using spectral unmixing and sparse coding, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9 (6) (2016) 2377–2389.
[32]
Dong W., Fu F., Shi G., Cao X., Wu J., et al., Hyperspectral image super-resolution via non-negative structured sparse representation, IEEE Trans. Image Process. 25 (5) (2016) 2337–2352.
[33]
Simoes M., Bioucas-Dias J., Almeida L.B., Chanussot J., A convex formulation for hyperspectral image superresolution via subspace-based regularization, IEEE Trans. Geosci. Remote Sens. 53 (6) (2015) 3373–3388.
[34]
Zhang K., Wang M., Yang S., Jiao L., Spatial-spectral-graph-regularized low-rank tensor decomposition for multispectral and hyperspectral image fusion, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11 (4) (2018) 1030–1040.
[35]
Zhang K., Wang M., Yang S., Multispectral and hyperspectral image fusion based on group spectral embedding and low-rank factorization, IEEE Trans. Geosci. Remote Sens. 55 (3) (2017) 1363–1371.
[36]
L. Zhang, J. Nie, W. Wei, Y. Zhang, S. Liao, L. Shao, Unsupervised adaptation learning for hyperspectral imagery super-resolution, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit, 2020, pp. 3073–3082.
[37]
Li Y., Fu M., Zhang H., Xu H., Zhang Q., Hyperspectral image fusion algorithm based on improved deep residual network, Signal Process. 210 (2023).
[38]
Dian R., Guo A., Li S., Zero-shot hyperspectral sharpening, IEEE Trans. Pattern Anal. Mach. Intell. (2023) 1–17.
[39]
Dian R., Li S., Guo A., Anjing H., Fang L., Deep hyperspectral image sharpening, IEEE Trans. Neural Netw. Learn. Syst. 29 (11) (2018) 5345–5355.
[40]
Dong X., Sun X., Jia X., Xi Z., Gao L., Zhang B., Remote sensing image super-resolution using novel dense-sampling networks, IEEE Trans. Geosci. Remote Sens. 59 (2) (2021) 1618–1633.
[41]
Liu D., Li J., Yuan Q., A spectral grouping and attention-driven residual dense network for hyperspectral image super-resolution, IEEE Trans. Geosci. Remote Sens. 59 (9) (2021) 7711–7725.
[42]
Deng S., Deng L., Wu X., Ran R., Hong D., Vivone G., PSRT: Pyramid shuffle-and-reshuffle transformer for multispectral and hyperspectral image fusion, IEEE Trans. Geosci. Remote Sens. 61 (2023).
[43]
Lu R., Chen B., Cheng Z., Wang P., Xu L., RAFnet: Recurrent attention fusion network of hyperspectral and multispectral images, Signal Process. 177 (2020).
[44]
Li K., Zhang W., Yu D., Tian X., HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion, ISPRS J. Photogramm. Remote Sens. 188 (2022) 30–44.
[45]
Liu S., Liu S., Zhang S., et al., SSAU-Net: A spectral-spatial attention-based U-Net for hyperspectral image fusion, IEEE Trans. Geosci. and Remote Sens. 60 (2022) 1–16.
[46]
Yang L., Zhang F., Wang P., et al., Multi-scale spatial–spectral fusion based on multi-input fusion calculation and coordinate attention for hyperspectral image classification, Pattern Recognit. 122 (2022).
[47]
Liu S., Miao S., Liu S., et al., Circle-Net: An unsupervised lightweight-attention cyclic network for hyperspectral and multispectral image fusion, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 16 (2023).
[48]
Dian R., Li S., Kang X., Regularizing hyperspectral and multispectral image fusion by CNN denoiser, IEEE Trans. Neural Netw. Learn. Syst. 32 (3) (2021) 1124–1135.
[49]
Q. Xie, M. Zhou, Q. Zhao, D. Meng, W. Zuo, Z. Xu, Multispectral and hyperspectral image fusion by MS/HS fusion net, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit, 2019, pp. 1585–1594.
[50]
W. Wang, W. Zeng, Y. Huang, X. Ding, J. Paisley, Deep blind hyperspectral image fusion, in: Proc. IEEE Int. Conf. Comput. Vis, 2019, pp. 4150–4159.
[51]
Yang J., Xiao L., Zhao Y., Chan J., Variational regularization network with attentive deep prior for hyperspectral-multispectral image fusion, IEEE Trans. Geosci. Remote. Sens. 60 (2022) 1–17.
[52]
Dong W., Zhang T., Qu J., Li Y., Xia H., A spatial–spectral dual-optimization model-driven deep network for hyperspectral and multispectral image fusion, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[53]
Liu J., Wu Z., Xiao L., Wu J., Model inspired autoencoder for unsupervised hyperspectral image super-resolution, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[54]
Li J., Song M., Peng Y., Infrared and visible image fusion based on robust principal component analysis and compressed sensing, Infrared Phys. Technol. 89 (2018) 129–139.
[55]
Zhang Y., Chen L., Zhao Z., et al., Multi-focus image fusion based on robust principal component analysis and pulse-coupled neural network, Optik 125 (17) (2014) 5002–5006.
[56]
Wei W., Nie J., Li Y., Zhang L., Zhang Y., Deep recursive network for hyperspectral image super-resolution, IEEE Trans. Comput. Imag. 6 (2020) 1233–1244.
[57]
S. Woo, J. Park, J.Y. Lee, I.S. Kweon, CBAM: Convolutional block attention module, in: Proc. Eur. Conf. Comput. Vis, 2018, pp. 3–19.
[58]
Wang X., Wang X., Zhao K., et al., FSL-Unet: Full-scale linked unet with spatial–spectral joint perceptual attention for hyperspectral and multispectral image fusion, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–14.
[59]
Dong W., Zhou C., Wu F., Wu J., et al., Model-guided deep hyperspectral image super-resolution, IEEE Trans. Image Process. 30 (2022) 5754–5768.
[60]
Aiazzi B., Baronti S., Selva M., Improving component substitution pansharpening through multivariate regression of MS+Pan data, IEEE Trans. Geosci. Remote Sens. 45 (10) (2007) 3230–3239.
[61]
Liu X., Liu Q., Wang Y., Remote sensing image fusion based on two-stream fusion network, Inf. Fusion 55 (2020) 1–15.
[62]
Jia S., Min Z., Fu X., Multiscale spatial–spectral transformer network for hyperspectral and multispectral image fusion, Inf. Fusion 96 (2023) 117–129.
[63]
R.H. Yuhas, A.F. Goetz, J.W. Boardman, Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm, in: Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop, 1992, pp. 147–149.
[64]
Wang Z., Bovik A.C., A universal image quality index, IEEE Signal Process. Lett. 9 (3) (2002) 81–84.
[65]
Wang Z., Bovik A.C., Sheikh H.R., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process. 13 (4) (2004) 600–612.
[66]
L. Wald, Quality of high resolution synthesized images: is there a simple criterion?, in: Proc. 3rd Conf. Fusion Earth Data, 2000, pp. 99–105.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Signal Processing
Signal Processing  Volume 213, Issue C
Dec 2023
402 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 01 December 2023

Author Tags

  1. Low-rank decomposition
  2. Unfolding network
  3. Image fusion
  4. Multispectral image
  5. Hyperspectral image

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media