Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Noise-resistant watermarking in the fractional Fourier domain utilizing moment-based image representation

Published: 01 August 2010 Publication History

Abstract

This paper presents a novel noise-robust scheme for watermark embedding and extraction, applicable on the broad scientific field of information security, including digital encryption for secure transmission. The proposed scheme employs Fourier coefficients for moment-based image analysis and the fractional Fourier transformation for watermark embedding. This approach maintains the advantages of spatial and frequency domain representations, offers two additional degrees of freedom associated with the fractional Fourier transformation angles, whereas it provides increased detectability of the embedded watermarks at the received end. The experimental evaluation of the proposed scheme leads to the conclusion that it is more robust in the presence of noise than previous schemes for watermark embedding and extraction.

References

[1]
Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J. and Kalker, T., Digital Watermarking and Steganography. 2008. Morgan Kaufmann, San Francisco, CA.
[2]
Autrusseau, F. and Le Callet, P., A robust image watermarking technique based on quantization noise visibility thresholds. Signal Process. v87. 1363-1383.
[3]
Djurovic, I., Stankovic, S. and Pitas, I., Digital watermarking in the fractional Fourier transform domain. J. Network Comput. Appl. v24. 167-173.
[4]
Guo, J., Liu, Z. and Liu, S., Watermarking based on discrete fractional random transform. Opt. Commun. v272 i2. 344-348.
[5]
Kutter, M. and Petitcolas, F., Fair evaluation methods for image watermarking systems. J. Electron. Imag. v9 i4. 445-455.
[6]
Solachidis, V. and Pitas, L., Circularly symmetric watermark embedding in 2-D DFT domain. IEEE Trans. Image Process. v10 i11. 1741-1753.
[7]
Nikolaidis, N. and Pitas, I., Robust image watermarking in the spatial domain. Signal Process. v66. 385-403.
[8]
Z. Yucel, A.B. Ozguler, Watermarking via zero assigned filter banks, Signal Process. 90 (2) (2010) 467-479.
[9]
D.C. Schuurman, D.W. Capson, Video-rate eigenspace methods for position tracking and remote monitoring, in: Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation, 2002, pp. 45-49.
[10]
Dudani, S.A., Breeding, K.J. and McGhee, R.B., Aircraft identification by moment invariants. IEEE Trans. Comput. vC-26 i1. 39-46.
[11]
Bailey, D.H. and Swarztrauber, P.N., The fractional Fourier transform and applications. SIAM Rev. v33. 389-404.
[12]
Lohmann, A.W., Mendlovic, D. and Zalevsky, Z., Fractional Hilbert transform. Opt. Lett. v21 i4. 281-283.
[13]
McBride, A.C. and Kerr, F.H., On Namias's fractional Fourier transforms. IMA J. Appl. Math. v39. 159-175.
[14]
Mendlovic, D. and Ozaktas, H.M., Fractional Fourier transforms and their optical implementation. Int. J. Opt. Soc. Am. A. v10. 1875-1881.
[15]
Namias, V., The fractional order Fourier transform and its application in quantum mechanics. J. Inst. Math. Appl. v25. 241-265.
[16]
Almeida, L.B., The fractional Fourier transform and time-frequency representation. IEEE Trans. Signal Process. v42. 3084-3091.
[17]
Chountasis, S., Vourdas, ***. and Bendjaballah, C., Fractional Fourier operators and generalized Wigner functions. Phys. Rev. ***. v60. 3467-3473.
[18]
Ozaktas, H.M., Zalevsky, Z. and Kutay, M., The Fractional Fourier Transform. 2001. John Wiley and Sons, New York, NY.
[19]
Banham, M.R. and Katsaggelos, A.K., Digital image restoration. IEEE Signal Process. Mag. v14. 24-41.
[20]
Castleman, K.R., Digital Processing. 1996. Prentice-Hall, Eglewood Cliffs, NJ.
[21]
Chantas, J., Galatsanos, N.P. and Woods, N., Super resolution based on fast registration and maximum A posteriori reconstruction. IEEE Trans. Image Process. v16 i7. 1821-1830.
[22]
El-Sayed Wahed, M., Image enhancement using second generation wavelet super resolution. Int. J. Phys. Sci. v2 i6. 149-158.
[23]
Gonzalez, R. and Wintz, P., Digital Image Processing. 1987. second ed. Addison-Wesley Publishing Co., USA.
[24]
A.K. Katsaggelos, J. Biemond, R.M. Mersereau, R.W. Schafer, A general formulation of constrained iterative restoration algorithms, in: IEEE Proceedings of ICASSP, Tampa, FL, 1985, pp. 700-703.
[25]
Celik, M.U., Sharma, G., Tekalp, A.M. and Saber, E., Lossless generalized-LSB data encoding. IEEE Trans. Image Process. v14 i2. 253-266.
[26]
Feng, S., Xu, D. and Yang, X., Attention-driven salient edge(s) and region(s) extraction with application to CBIR. Signal Process. v90. 1-15.
[27]
Qi, X. and Qi, J., A robust content-based digital image watermarking scheme. Signal Process. v87. 1264-1280.
[28]
Kumari, B.P. and Rallabandi, V.P.S., Modified patchwork-based watermarking scheme for satellite imagery. Signal Process. v88. 891-904.
[29]
Schafer, R.W., Mersereau, R.M. and Richards, M.A., Constrained iterative restoration algorithms. Proc. IEEE. v69. 432-450.
[30]
Groetsch, C.W., Generalized Inverses of Linear Operators: Representation and Approximation, Monographs and Textbooks in Pure and Applied Mathematics 3. 1977. Marcel Dekker.
[31]
A. Bultheel, Digital watermarking of images in the fractional Fourier domain, Technical Report, TW 497, 2007.
[32]
Barni, M., Bartolini, F. and Piva, A., Improved wavelet-based watermarking through pixel-wise masking. IEEE Trans. Image Process. v10 i5. 783-791.

Cited By

View all
  • (2022)Color image watermarking based on singular value decomposition and generalized regression neural networkMultimedia Tools and Applications10.1007/s11042-022-12990-181:22(32073-32091)Online publication date: 1-Sep-2022
  • (2019)Commutative fragile zero-watermarking and encryption for image integrity protectionMultimedia Tools and Applications10.1007/s11042-019-7560-178:16(22727-22742)Online publication date: 1-Aug-2019
  • (2017)Dual domain robust watermarking scheme using random DFRFT and least significant bit techniqueMultimedia Tools and Applications10.1007/s11042-016-4095-676:3(3921-3942)Online publication date: 1-Feb-2017
  • Show More Cited By
  1. Noise-resistant watermarking in the fractional Fourier domain utilizing moment-based image representation

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Signal Processing
      Signal Processing  Volume 90, Issue 8
      August, 2010
      303 pages

      Publisher

      Elsevier North-Holland, Inc.

      United States

      Publication History

      Published: 01 August 2010

      Author Tags

      1. Noise robustness
      2. Spatial/frequency domains
      3. Watermarking

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 20 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Color image watermarking based on singular value decomposition and generalized regression neural networkMultimedia Tools and Applications10.1007/s11042-022-12990-181:22(32073-32091)Online publication date: 1-Sep-2022
      • (2019)Commutative fragile zero-watermarking and encryption for image integrity protectionMultimedia Tools and Applications10.1007/s11042-019-7560-178:16(22727-22742)Online publication date: 1-Aug-2019
      • (2017)Dual domain robust watermarking scheme using random DFRFT and least significant bit techniqueMultimedia Tools and Applications10.1007/s11042-016-4095-676:3(3921-3942)Online publication date: 1-Feb-2017
      • (2016)Robust watermarking using orthogonal Fourier-Mellin moments and chaotic map for double imagesSignal Processing10.1016/j.sigpro.2015.10.005120:C(522-531)Online publication date: 1-Mar-2016
      • (2016)A modular framework for color image watermarkingSignal Processing10.1016/j.sigpro.2015.07.018119:C(102-114)Online publication date: 1-Feb-2016
      • (2016)Invariant color image watermarking approach using quaternion radial harmonic Fourier momentsMultimedia Tools and Applications10.1007/s11042-015-2687-175:13(7655-7679)Online publication date: 1-Jul-2016
      • (2015)Robust Color Image Watermarking Using Geometric Invariant Quaternion Polar Harmonic TransformACM Transactions on Multimedia Computing, Communications, and Applications10.1145/270029911:3(1-26)Online publication date: 5-Feb-2015
      • (2015)Discrete Gyrator Transforms: Computational Algorithms and ApplicationsIEEE Transactions on Signal Processing10.1109/TSP.2015.243784563:16(4207-4222)Online publication date: 1-Aug-2015
      • (2013)Fast communicationSignal Processing10.1016/j.sigpro.2013.01.02493:7(2087-2095)Online publication date: 1-Jul-2013
      • (2012)A blind watermarking algorithm based on fractional Fourier transform and visual cryptographySignal Processing10.1016/j.sigpro.2011.12.00692:6(1480-1491)Online publication date: 1-Jun-2012

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media