Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Improving robustness with image filtering

Published: 25 September 2024 Publication History

Abstract

Adversarial robustness is one of the most challenging problems in Deep Learning and Computer Vision research. State-of-the-art techniques to enforce robustness are based on Adversarial Training, a computationally costly optimization procedure. For this reason, many alternative solutions have been proposed, but none proved effective under stronger or adaptive attacks. This paper presents Image-Graph Extractor (IGE), a new image filtering scheme that extracts the fundamental nodes of an image and their connections through a graph structure. By utilizing the IGE representation, we have developed a new defense technique, Filtering as a Defense, which prevents attackers from creating malicious patterns that can deceive image classifiers. Moreover, we show that data augmentation with filtered images effectively improves the model’s robustness to data corruptions. We validate our techniques on Convolutional Neural Networks on CIFAR-10, CIFAR-100, and ImageNet.

References

[1]
Szegedy C., Zaremba W., Sutskever I., Bruna J., Erhan D., Goodfellow I., Fergus R., Intriguing properties of neural networks, 2013, arXiv:1312.6199.
[2]
Athalye A., Carlini N., Wagner D., Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples, 2018, arXiv:1802.00420.
[3]
Tramer F., Carlini N., Brendel W., Madry A., On adaptive attacks to adversarial example defenses, 2020, arXiv preprint arXiv:2002.08347.
[4]
Guo C., Rana M., Cisse M., Van Der Maaten L., Countering adversarial images using input transformations, 2017, arXiv preprint arXiv:1711.00117.
[5]
Madry A., Makelov A., Schmidt L., Tsipras D., Vladu A., Towards deep learning models resistant to adversarial attacks, 2017, arXiv:1706.06083.
[6]
Goodfellow I.J., Shlens J., Szegedy C., Explaining and harnessing adversarial examples, 2014, arXiv:1412.6572.
[7]
Kurakin A., Goodfellow I., Bengio S., Adversarial machine learning at scale, 2016, arXiv:1611.01236.
[8]
Kannan H., Kurakin A., Goodfellow I., Adversarial logit pairing, 2018, arXiv preprint arXiv:1803.06373.
[9]
Moosavi-Dezfooli S.-M., Fawzi A., Uesato J., Frossard P., Robustness via curvature regularization, and vice versa, 2018, URL https://arxiv.org/pdf/1811.09716.
[10]
Shaham U., Yamada Y., Negahban S., Understanding adversarial training: Increasing local stability of neural nets through robust optimization, 2015, arXiv preprint arXiv:1511.05432.
[11]
Carmon Y., Raghunathan A., Schmidt L., Liang P., Duchi J.C., Unlabeled data improves adversarial robustness, 2019, arXiv preprint arXiv:1905.13736.
[12]
Gowal S., Rebuffi S.-A., Wiles O., Stimberg F., Calian D.A., Mann T.A., Improving robustness using generated data, Adv. Neural Inf. Process. Syst. 34 (2021) 4218–4233.
[13]
Rebuffi S.-A., Gowal S., Calian D.A., Stimberg F., Wiles O., Mann T.A., Data augmentation can improve robustness, Adv. Neural Inf. Process. Syst. 34 (2021) 29935–29948.
[14]
Qin C., Martens J., Gowal S., Krishnan D., Dvijotham K., Fawzi A., De S., Stanforth R., Kohli P., Adversarial robustness through local linearization, 2019, arXiv preprint arXiv:1907.02610.
[15]
Cisse M., Bojanowski P., Grave E., Dauphin Y., Usunier N., Parseval networks: Improving robustness to adversarial examples, in: International Conference on Machine Learning, PMLR, 2017, pp. 854–863.
[16]
Papernot N., McDaniel P., Wu X., Jha S., Swami A., Distillation as a defense to adversarial perturbations against deep neural networks, in: 2016 IEEE Symposium on Security and Privacy, SP, IEEE, 2016, pp. 582–597.
[17]
Pang T., Xu K., Du C., Chen N., Zhu J., Improving adversarial robustness via promoting ensemble diversity, in: International Conference on Machine Learning, PMLR, 2019, pp. 4970–4979.
[18]
Bai Y., Zeng Y., Jiang Y., Xia S.-T., Ma X., Wang Y., Improving adversarial robustness via channel-wise activation suppressing, 2021, arXiv preprint arXiv:2103.08307.
[19]
C. Xie, Y. Wu, L.v.d. Maaten, A.L. Yuille, K. He, Feature denoising for improving adversarial robustness, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 501–509.
[20]
C. Shi, C. Holtz, G. Mishne, Online adversarial purification based on self-supervised learning, in: International Conference on Learning Representations, 2020.
[21]
Guo Y., Stutz D., Schiele B., Improving robustness by enhancing weak subnets, in: European Conference on Computer Vision, Springer, 2022, pp. 320–338.
[22]
Dziugaite G.K., Ghahramani Z., Roy D.M., A study of the effect of jpg compression on adversarial images, 2016, arXiv preprint arXiv:1608.00853.
[23]
Lu J., Sibai H., Fabry E., Forsyth D., No need to worry about adversarial examples in object detection in autonomous vehicles, 2017, arXiv preprint arXiv:1707.03501.
[24]
Tsipras D., Santurkar S., Engstrom L., Turner A., Madry A., Robustness may be at odds with accuracy, in: International Conference on Learning Representations, 2019, URL https://openreview.net/forum?id=SyxAb30cY7.
[25]
Ilyas A., Santurkar S., Tsipras D., Engstrom L., Tran B., Madry A., Adversarial examples are not bugs, they are features, in: Advances in Neural Information Processing Systems, 2019, pp. 125–136.
[26]
Sharma G., Wu W., Dalal E.N., The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations, Color Res. Appl. 30 (1) (2005) 21–30.
[27]
Stutz D., Hermans A., Leibe B., Superpixels: An evaluation of the state-of-the-art, Comput. Vis. Image Underst. 166 (2018) 1–27.
[28]
Krizhevsky A., Nair V., Hinton G., Cifar-10 and cifar-100 datasets, 2009, URL https://www.cs.toronto.edu/kriz/cifar.html 6.
[29]
Deng J., Dong W., Socher R., Li L.-J., Li K., Fei-Fei L., Imagenet: A large-scale hierarchical image database, in: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, IEEE, 2009, pp. 248–255.
[30]
He K., Zhang X., Ren S., Sun J., Identity mappings in deep residual networks, 2016, arXiv:1603.05027.
[31]
Salman H., Ilyas A., Engstrom L., Kapoor A., Madry A., Do adversarially robust imagenet models transfer better?, Adv. Neural Inf. Process. Syst. 33 (2020) 3533–3545.
[32]
Achanta R., Shaji A., Smith K., Lucchi A., Fua P., Süsstrunk S., SLIC superpixels compared to state-of-the-art superpixel methods, IEEE Trans. Pattern Anal. Mach. Intell. 34 (11) (2012) 2274–2282.
[33]
Salman H., Ilyas A., Engstrom L., Vemprala S., Madry A., Kapoor A., Unadversarial examples: Designing objects for robust vision, 2020, arXiv preprint arXiv:2012.12235.
[34]
Dosovitskiy A., Beyer L., Kolesnikov A., Weissenborn D., Zhai X., Unterthiner T., Dehghani M., Minderer M., Heigold G., Gelly S., et al., An image is worth 16 × 16 words: Transformers for image recognition at scale, 2020, arXiv preprint arXiv:2010.11929.
[35]
Playne D.P., Hawick K., A new algorithm for parallel connected-component labelling on GPUs, IEEE Trans. Parallel Distrib. Syst. 29 (6) (2018) 1217–1230.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Neurocomputing
Neurocomputing  Volume 596, Issue C
Sep 2024
611 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 25 September 2024

Author Tags

  1. Robustness
  2. Adversarial attacks and defenses
  3. Adversarial training
  4. Deep Neural Networks

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Sep 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media