Nothing Special   »   [go: up one dir, main page]

skip to main content
short-survey

A comprehensive review of image retargeting

Published: 02 July 2024 Publication History

Abstract

With the development of display technologies, image retargeting plays a significant role in computer vision and pattern recognition communities currently. Image retargeting aims to display an image on a series of appliances with different resolutions and target aspect ratios. During the last decade, representative algorithms for image retargeting have been presented in the literature and achieved state-of-the-art performance. In this survey, we provide a comprehensive review of image retargeting, covering a wide variety of pioneering works for 2D image retargeting and stereoscopic image retargeting. 2D image retargeting focuses on preserving interesting regions when modifying the original image with arbitrary resolutions appropriately. Different from 2D image retargeting, stereoscopic image retargeting needs to preserve both the shape structure of salient objects and the depth consistency of 3D scenes simultaneously. In this survey, we start the first attempt to analyze the trends of 2D image retargeting and then summarize different types of stereoscopic image retargeting. Secondly, image retargeting quality assessment metrics for 2D images and stereoscopic images are introduced to evaluate retargeted images. Thirdly, we also investigate the evaluation datasets, and give the comparison results and analysis between different representative methods. Finally, the promising future research is thoroughly discussed to further improve the performance of 2D and stereoscopic image retargeting.

References

[1]
Chai X., Shao F., Jiang Q., Ho Y.-S., Roundness-preserving warping for aesthetic enhancement-based stereoscopic image editing, IEEE Trans. Circuits Syst. Video Technol. 31 (4) (2021) 1463–1477.
[2]
J. Yan, S. Lin, S.B. Kang, X. Tang, Learning the Change for Automatic Image Cropping, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 971–978.
[3]
Kekre D., Tanuja M., Sarode K., Thepade S.D., Grid based image scaling technique, Int. J. Comput. Sci. Appl. 1 (2) (2008) 95–98.
[4]
Rubinstein M., Gutierrez D., Sorkine O., Shamir A., A comparative study of image retargeting, ACM Trans. Graph. 29 (6) (2010) 160:1–160:10.
[5]
Mademlis I., Tefas A., Nikolaidis N., Pitas I., Multimodal stereoscopic movie summarization conforming to narrative characteristics, IEEE Trans. Image Process. 25 (12) (2016) 5828–5840.
[6]
Holliman N.S., Dodgson N.A., Favalora G.E., Pockett L., Three-dimensional displays: A review and applications analysis, IEEE Trans. Broadcast. 57 (2) (2011) 362–371.
[7]
Tan W., Yan B., Li K., Tian Q., Image retargeting for preserving robust local feature: Application to mobile visual search, IEEE Trans. Multimed. 18 (1) (2016) 128–137.
[8]
Wu Y., Liu X., Liu S., Ma K.-L., Visizer: A visualization resizing framework, IEEE Trans. Vis. Comput. Graphics 19 (2) (2013) 278–290.
[9]
Avidan S., Shamir A., Seam carving for content-aware image resizing, ACM Trans. Graph. 26 (3) (2007) 10–19.
[10]
Rubinstein M., Shamir A., Avidan S., Improved seam carving for video retargeting, ACM Trans. Graph. 27 (3) (2008) 23–31.
[11]
L. Wolf, M. Guttmann, D. Cohen-Or, Non-homogeneous Content-driven Video-retargeting, in: 2007 IEEE 11th International Conference on Computer Vision, 2007, pp. 1–6.
[12]
Wang Y.S., Tai C.L., Sorkine O., Lee T.Y., Optimized scale-and-stretch for image resizing, ACM Trans. Graph. 27 (5) (2008) 118–122.
[13]
Lau C.P., Yung C.P., Lui L.M., Image retargeting via beltrami representation, IEEE Trans. Image Process. 27 (12) (2018) 5787–5801.
[14]
Fang Y., Fang Z., Yuan F., Yang Y., Yang S., Xiong N.N., Optimized multioperator image retargeting based on perceptual similarity measure, IEEE Trans. Syst. Man Cybern.: Syst. 47 (11) (2017) 2956–2966.
[15]
Dong W.M., Bao G.B., Paul Z., Fast multi-operator image resizing and evaluation, J. Comput. Sci. Tech. 27 (1) (2012) 121–134.
[16]
Shelhamer E., Long J., Darrell T., Fully convolutional networks for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 39 (4) (2017) 640–651.
[17]
Lei J., Luo X., Fang L., Wang M., Gu Y., Region-enhanced convolutional neural network for object detection in remote sensing images, IEEE Trans. Geosci. Remote Sens. 58 (8) (2020) 5693–5702.
[18]
Rubinstein M., Shamir A., Avidan S., Multi-operator media retargeting, ACM Trans. Graph. 28 (3) (2009) 23–33.
[19]
D. Cho, J. Park, T.-H. Oh, Y.-W. Tai, I.S. Kweon, Weakly- and Self-Supervised Learning for Content-Aware Deep Image Retargeting, in: 2017 IEEE International Conference on Computer Vision, ICCV, 2017, pp. 4568–4577.
[20]
Mademlis I., Tefas A., Nikolaidis N., Pitas I., Multimodal stereoscopic movie summarization conforming to narrative characteristics, IEEE Trans. Image Process. 25 (12) (2016) 5828–5840.
[21]
Wang L., Xiong Z., Shi G., Zeng W., Wu F., Simultaneous depth and spectral imaging with a cross-modal stereo system, IEEE Trans. Circuits Syst. Video Technol. 28 (3) (2018) 812–817.
[22]
Du S.-P., Hu S.-M., Martin R.R., Changing perspective in stereoscopic images, IEEE Trans. Vis. Comput. Graphics 19 (8) (2013) 1288–1297.
[23]
Liu Y., Ci S., Liu J., Ye Y., Qi Y., Integrating stereoscopic image transcoding with retargeting for mobile streaming, 2012, pp. 1–6.
[24]
Karni Z., Freedman D., Gotsman C., Energy-based image deformation, Comput. Graph. Forum 28 (5) (2009) 1257–1268.
[25]
Li B., Lin C.-W., Liu S., Huang T., Gao W., Kuo C.-C.J., Perceptual temporal incoherence-guided stereo video retargeting, IEEE Trans. Image Process. 29 (2020) 5767–5782.
[26]
Li B., Duan L.-Y., Wang J., Ji R., Lin C.-W., Gao W., Spatiotemporal grid flow for video retargeting, IEEE Trans. Image Process. 23 (4) (2014) 1615–1628.
[27]
Fan X., Lei J., Liang J., Fang Y., Ling N., Huang Q., Stereoscopic image retargeting based on deep convolutional neural network, IEEE Trans. Circuits Syst. Video Technol. 31 (12) (2021) 4759–4770.
[28]
Li B., Duan L.-Y., Lin C.-W., Huang T., Gao W., Depth-preserving warping for stereo image retargeting, IEEE Trans. Image Process. 24 (9) (2015) 2811–2826.
[29]
Lei J., Wu M., Zhang C., Wu F., Ling N., Hou C., Depth-preserving stereo image retargeting based on pixel fusion, IEEE Trans. Multimed. 19 (7) (2017) 1442–1453.
[30]
Huang C.-R., Chung P.-C.J., Yang D.-K., Chen H.-C., Huang G.-J., Maximum a posteriori probability estimation for online surveillance video synopsis, IEEE Trans. Circuits Syst. Video Technol. 24 (8) (2014) 1417–1429.
[31]
Islam M.B., Wong L.-K., Low K.-L., Wong C.-O., Aesthetics-driven stereoscopic 3-D image recomposition with depth adaptation, IEEE Trans. Multimed. 20 (11) (2018) 2964–2979.
[32]
Z. Yan, H. Chen, A Study of Image Retargeting Based on Seam Carving, in: 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation, 2014, pp. 60–63.
[33]
Z.K. Senturk, D. Akgun, Seam Carving Based Image Retargeting: A Survey, in: 2019 1st International Informatics and Software Engineering Conference, UBMYK, 2019, pp. 1–6.
[34]
Lin X., Ma L., Ma L., Zhang R., A survey for image resizing, J. Zhejiang Univ. Sci. C 15 (15) (2014) 697–716.
[35]
Kiess J., Kopf S., Guthier B., Effelsberg W., A survey on content-aware image and video retargeting, ACM Trans. Multimed. Comput. Commun. Appl. 14 (3) (2018) 76.1–76.28.
[36]
Asheghi B., Salehpour P., Khiavi A.M., Hashemzadeh M., A comprehensive review on content-aware image retargeting: From classical to state-of-the-art methods, Signal Process. 195 (2022) 1–19.
[37]
B. Suh, H. Ling, B.B. Bederson, D.W. Jacobs, Automatic Thumbnail Cropping and Its Effectiveness, in: 16th Annual ACM Symposium on User Interface Software and Technology, 2003, pp. 95–104.
[38]
X. Fan, X. Xie, W.-Y. Ma, H.-J. Zhang, H.-Q. Zhou, Visual attention based image browsing on mobile devices, in: 2003 International Conference on Multimedia and Expo. ICME ’03. Proceedings (Cat. No.03TH8698), Vol. 1, 2003, pp. I–53.
[39]
H. Liu, X. Xing, W.Y. Ma, H.J. Zhang, Automatic browsing of large pictures on mobile devices, in: Eleventh ACM International Conference on Multimedia, 2003, pp. 148–155.
[40]
J. Luo, Subject Content-Based Intelligent Cropping of Digital Photos, in: 2007 IEEE International Conference on Multimedia and Expo, 2007, pp. 2218–2221.
[41]
J. Chen, G. Bai, S. Liang, Z. Li, Automatic Image Cropping: A Computational Complexity Study, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 507–515.
[42]
Y. Pritch, E. Kav-Venaki, S. Peleg, Shift-map image editing, in: 2009 IEEE 12th International Conference on Computer Vision, 2009, pp. 151–158.
[43]
Petrovic V., Xydeas C., Gradient-based multiresolution image fusion, IEEE Trans. Image Process. 13 (2) (2004) 228–237.
[44]
D.-S. Hwang, S.-Y. Chien, Content-aware image resizing using perceptual seam carving with human attention model, in: 2008 IEEE International Conference on Multimedia and Expo, 2008, pp. 1029–1032.
[45]
Guo F., Wang W., Shen Z., Shen J., Shao L., Tao D., Motion-aware rapid video saliency detection, IEEE Trans. Circuits Syst. Video Technol. 30 (12) (2020) 4887–4898.
[46]
Cong R., Lei J., Fu H., Cheng M.-M., Lin W., Huang Q., Review of visual saliency detection with comprehensive information, IEEE Trans. Circuits Syst. Video Technol. 29 (10) (2019) 2941–2959.
[47]
Fang Y., Chen Z., Lin W., Lin C.-W., Saliency detection in the compressed domain for adaptive image retargeting, IEEE Trans. Image Process. 21 (9) (2012) 3888–3901.
[48]
A. Mansfield, P.V. Gehler, L. Gool, C. Rother, Scene Carving: Scene Consistent Image Retargeting, in: European Conference on Computer Vision, 2010, pp. 143–156.
[49]
Shen J., Wang D., Li X., Depth-aware image seam carving, IEEE Trans. Cybern. 43 (5) (2013) 1453–1461.
[50]
J. Kiess, R. Kopf, R. Guthier, R. Effelsberg, Seam Carving with Improved Edge Preservation, in: Conference on Multimedia on Mobile Devices, 2010, pp. 75420G.1–75420G.11.
[51]
T. Ren, Y. Liu, G. Wu, Image retargeting based on global energy optimization, in: 2009 IEEE International Conference on Multimedia and Expo, 2009, pp. 406–409.
[52]
Yan B., Li K., Yang X., Hu T., Seam searching-based pixel fusion for image retargeting, IEEE Trans. Circuits Syst. Video Technol. 25 (1) (2015) 15–23.
[53]
Amirani M.C., Valizadeh M., A new seam carving method for image resizing based on entropy energy and Lyapunov exponent, Multimedia Tools Appl. 82 (2023) 119417–119440.
[54]
Qi S., Chi Y.-T.J., Peter A.M., Ho J., CASAIR: Content and shape-aware image retargeting and its applications, IEEE Trans. Image Process. 25 (5) (2016) 2222–2232.
[55]
Zhou Y., Zhang L., Zhang C., Li P., Li X., Perceptually aware image retargeting for mobile devices, IEEE Trans. Image Process. 27 (5) (2018) 2301–2313.
[56]
Dong W., Wu F., Kong Y., Mei X., Lee T.-Y., Zhang X., Image retargeting by texture-aware synthesis, IEEE Trans. Vis. Comput. Graphics 22 (2) (2016) 1088–1101.
[57]
Mishiba K., Oyamada Y., Kondo K., Content-aware image retargeting incorporated with letterboxing, IEICE Trans. Inf. Syst. 100 (4) (2017) 865–873.
[58]
Kim Y., Eun H., Jung C., Kim C., A quad edge-based grid encoding model for content-aware image retargeting, IEEE Trans. Vis. Comput. Graphics 25 (12) (2019) 3202–3215.
[59]
Huang Q., Mech R., Carr N.A., Optimizing structure preserving embedded deformation for resizing images and vector art, Comput. Graph. Forum 28 (7) (2009) 1887–1896.
[60]
R. Chen, D. Freedman, Z. Karni, C. Gotsman, L. Liu, Content-aware image resizing by quadratic programming, in: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, 2010, pp. 1–8.
[61]
Wang S.-F., Lai S.-H., Compressibility-aware media retargeting with structure preserving, IEEE Trans. Image Process. 20 (3) (2011) 855–865.
[62]
Y. Zhang, K.N. Ngan, Fast patch-wise image retargeting, in: 2016 IEEE International Conference on Image Processing, ICIP, 2016, pp. 1813–1817.
[63]
Xu J., Kang H., Chen F., Content-aware image resizing using quasi-conformal mapping, Vis. Comput. 34 (7) (2017) 431–442.
[64]
Panozzo D., Weber O., Sorkine O., Robust image retargeting via axis-aligned deformation, Comput. Graph. Forum 31 (2pt1) (2012) 229–236.
[65]
S. Choi, B. Ham, K. Sohn, Fast image retargeting via axis-aligned importance scaling, in: 2013 IEEE International Conference on Image Processing, 2013, pp. 1061–1065.
[66]
B.C. Das, V. Gopalakrishnan, K.N. Iyer, A. Gaurav, Similarity and rigidity preserving image retargeting, in: 2016 IEEE International Conference on Image Processing, ICIP, 2016, pp. 1584–1588.
[67]
Tan W., Yan B., Li K., Tian Q., Image retargeting for preserving robust local feature: Application to mobile visual search, IEEE Trans. Multimed. 18 (1) (2016) 128–137.
[68]
Wang S.-F., Lai S.-H., A structure-aware axis-aligned grid deformation approach for robust image retargeting, Multimedia Tools Appl. 77 (6) (2018) 7717–7739.
[69]
Yan B., Tan W., Li K., Tian Q., Codebook guided feature-preserving for recognition-oriented image retargeting, IEEE Trans. Image Process. 26 (5) (2017) 2454–2465.
[70]
J.-W. Han, K.-S. Choi, T.-S. Wang, S.-H. Cheon, S.-J. Ko, Improved seam carving using a modified energy function based on wavelet decomposition, in: 2009 IEEE 13th International Symposium on Consumer Electronics, 2009, pp. 38–41.
[71]
Dong W.M., Bao G.B., Zhang X.P., Paul J.C., Fast multi-operator image resizing and evaluation, J. Comput. Sci. Tech. 27 (1) (2012) 121–134.
[72]
Garg A., Content-aware image retargeting technique and iterated function system: frameworks, applications, and possible future advancements, Multimedia Tools Appl. (2023) 1–45.
[73]
Wu L., Cao L., Min X., Wang J., A hybrid image retargeting approach via combining seam carving and grid warping, J. Multimed. 9 (4) (2014) 483–492.
[74]
Tang Z., Yao J., Zhang Q., Multi-operator image retargeting in compressed domain by preserving aspect ratio of important contents, Multimedia Tools Appl. 81 (2022) 1501–1522.
[75]
M. Everingham, L. Gool, C. Williams, J. Winn, A. Zisserman, The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascalnetwork.org/challenges/VOC/voc2007/workshop/index.html.
[76]
Xiong B., Jain S.D., Grauman K., Pixel objectness: Learning to segment generic objects automatically in images and videos, IEEE Trans. Pattern Anal. Mach. Intell. 41 (11) (2019) 2677–2692.
[77]
D.-P. Fan, M.-M. Cheng, Y. Liu, T. Li, A. Borji, Structure-Measure: A New Way to Evaluate Foreground Maps, in: 2017 IEEE International Conference on Computer Vision, ICCV, 2017, pp. 4558–4567.
[78]
Hou Q., Cheng M.-M., Hu X., Borji A., Tu Z., Torr P.H.S., Deeply supervised salient object detection with short connections, IEEE Trans. Pattern Anal. Mach. Intell. 41 (4) (2019) 815–828.
[79]
Liu S., Wei Z., Sun Y., Ou X., Lin J., Liu B., Yang M.-H., Composing semantic collage for image retargeting, IEEE Trans. Image Process. 27 (10) (2018) 5032–5043.
[80]
Yan B., Niu X., Bare B., Tan W., Semantic segmentation guided pixel fusion for image retargeting, IEEE Trans. Multimed. 22 (3) (2020) 676–687.
[81]
J. Lin, T. Zhou, Z. Chen, DeepIR: A Deep Semantics Driven Framework for Image Retargeting, in: 2019 IEEE International Conference on Multimedia and Expo Workshops, ICMEW, 2019, pp. 54–59.
[82]
Song E., Lee M., Lee S., CarvingNet: Content-guided seam carving using deep convolution neural network, IEEE Access 7 (2019) 284–292.
[83]
Danon D., Arar M., Cohen-Or D., Shamir A., Image resizing by reconstruction from deep features, Comput. Vis. Media (4) (2021) 453–466.
[84]
J. Wu, R. Xie, L. Song, B. Liu, Deep Feature Guided Image Retargeting, in: 2019 IEEE Visual Communications and Image Processing, VCIP, 2019, pp. 1–4.
[85]
Tan W., Yan B., Lin C., Niu X., Cycle-IR: Deep cyclic image retargeting, IEEE Trans. Multimed. 22 (7) (2020) 1730–1743.
[86]
Zhou Y., Chen Z., Li W., Weakly supervised reinforced multi-operator image retargeting, IEEE Trans. Circuits Syst. Video Technol. 31 (1) (2021) 126–139.
[87]
Dy J.B., Virtusio J.J., Tan D.S., Lin Y.-X., Ilao J., Chen Y.-Y., Hua K.-L., MCGAN: Mask controlled generative adversarial network for image retargeting, Neural Comput. Appl. 35 (2023) 10497–10509.
[88]
Nam S.-H., Ahn W., Yu I.-J., Kwon M.-J., Son M., Lee H.-K., Deep convolutional neural network for identifying seam-carving forgery, IEEE Trans. Circuits Syst. Video Technol. 31 (8) (2021) 3308–3326.
[89]
Niu Y., Liu F., Feng W.-C., Jin H., Aesthetics-based stereoscopic photo cropping for heterogeneous displays, IEEE Trans. Multimed. 14 (3) (2012) 783–796.
[90]
K. Utsugi, T. Shibahara, T. Koike, K. Takahashi, T. Naemura, Seam carving for stereo images, in: 2010 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2010, pp. 1–4.
[91]
Y. Liu, S. Ci, J. Liu, Y. Ye, Y. Qi, Integrating stereoscopic image transcoding with retargeting for mobile streaming, in: 2012 Visual Communications and Image Processing, 2012, pp. 1–6.
[92]
Dekel Basha T., Moses Y., Avidan S., Stereo seam carving a geometrically consistent approach, IEEE Trans. Pattern Anal. Mach. Intell. 35 (10) (2013) 2513–2525.
[93]
J. Wang, Y. Fang, M. Narwaria, W. Lin, P. Le Callet, Stereoscopic image retargeting based on 3D saliency detection, in: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2014, pp. 669–673.
[94]
W.-C. Jhou, Y.-H. Lin, J.-L. Wu, Seam Carving for Color-Plus-Depth 3D Image, in: 2014 IEEE International Symposium on Multimedia, 2014, pp. 82–85.
[95]
K.-C. Lien, M. Turk, On Preserving Structure in Stereo Seam Carving, in: 2015 International Conference on 3D Vision, 2015, pp. 571–579.
[96]
B. Bare, K. Li, B. Yan, X. Qi, H. Gharavi, Pixel fusion based stereo image retargeting, in: 2015 IEEE International Conference on Multimedia and Expo, ICME, 2015, pp. 1–6.
[97]
Shao F., Lin W., Lin W., Jiang G., Yu M., Fu R., Stereoscopic visual attention guided seam carving for stereoscopic image retargeting, J. Disp. Technol. 12 (1) (2016) 22–30.
[98]
Chen Y., Pan Y., Song M., Wang M., Improved seam carving combining with 3D saliency for image retargeting, Neurocomputing 151 (2) (2015) 645–653.
[99]
Chai X., Shao F., Jiang Q., Ho Y.-S., Seam manipulator: Leveraging pixel fusion for depth-adjustable stereoscopic image retargeting, IEEE Access 7 (2019) 25239–25252.
[100]
Chang C.-H., Liang C.-K., Chuang Y.-Y., Content-aware display adaptation and interactive editing for stereoscopic images, IEEE Trans. Multimed. 13 (4) (2011) 589–601.
[101]
S. Qi, J. Ho, Shift-Map Based Stereo Image Retargeting with Disparity Adjustment, in: Asian Conference on Computer Vision, 2012, pp. 1–14.
[102]
Niu Y., Feng W.C., Feng L., Enabling warping on stereoscopic images, ACM Trans. Graph. 31 (6CD) (2012) 183.1–183.2.
[103]
K.-Y. Lee, C.-D. Chung, Y.-Y. Chuang, Scene warping: Layer-based stereoscopic image resizing, in: 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 49–56.
[104]
Yoo J.W., Yea S., Park I.K., Content-driven retargeting of stereoscopic images, IEEE Signal Process. Lett. 20 (5) (2013) 519–522.
[105]
Lin S.-S., Yeh I.-C., Lin C.-H., Lee T.-Y., Patch-based image warping for content-aware retargeting, IEEE Trans. Multimed. 15 (2) (2013) 359–368.
[106]
B. Li, L. Duan, C.-W. Lin, W. Gao, Region-based depth-preserving stereoscopic image retargeting, in: 2014 IEEE International Conference on Image Processing, ICIP, 2014, pp. 2903–2907.
[107]
Lin S.-S., Lin C.-H., Chang S.-H., Lee T.-Y., Object-coherence warping for stereoscopic image retargeting, IEEE Trans. Circuits Syst. Video Technol. 24 (5) (2014) 759–768.
[108]
Shao F., Lin W., Lin W., Jiang Q., Jiang G., QoE-guided warping for stereoscopic image retargeting, IEEE Trans. Image Process. 26 (10) (2017) 4790–4805.
[109]
Zhou Y., Xiao X., Zhang Q., Wang X., Jiang J., Deep stereoscopic image saliency inspired stereoscopic image thumbnail generation, Multimedia Tools Appl. 81 (2022) 42749–42767.
[110]
Fan X., Lei J., Liang J., Fang Y., Ling N., Unsupervised stereoscopic image retargeting via view synthesis and stereo cycle consistency losses, Neurocomputing 447 (11) (2021) 161–171.
[111]
H. Imani, M.B. Islam, L.-K. Wong, Saliency-aware Stereoscopic Video Retargeting, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2023, pp. 1230–1239.
[112]
N. Kajiura, S. Kosugi, X. Wang, T. Yamasaki, Self-Play Reinforcement Learning for Fast Image Retargeting, in: MM ’20: The 28th ACM International Conference on Multimedia, 2020, pp. 1755–1763.
[113]
Niu Y., Zhang S., Wu Z., Zhao T., Chen W., Image retargeting quality assessment based on registration confidence measure and noticeability-based pooling, IEEE Trans. Circuits Syst. Video Technol. 31 (3) (2021) 972–985.
[114]
Shao F., Fu Z., Jiang Q., Jiang G., Ho Y.-S., Transformation-aware similarity measurement for image retargeting quality assessment via bidirectional rewarping, IEEE Trans. Syst. Man Cybern.: Syst. 51 (5) (2021) 3053–3067.
[115]
Peng Z., Jiang Q., Shao F., Gao W., Lin W., LGGD+: Image retargeting quality assessment by measuring local and global geometric distortions, IEEE Trans. Circuits Syst. Video Technol. 32 (6) (2022) 3422–3437.
[116]
Jiang B., Yang J., Meng Q., Li B., Lu W., A deep evaluator for image retargeting quality by geometrical and contextual interaction, IEEE Trans. Cybern. 50 (1) (2020) 87–99.
[117]
Liu Y.-J., Han Y., Ye Z., Lai Y.-K., Ranking-preserving cross-source learning for image retargeting quality assessment, IEEE Trans. Pattern Anal. Mach. Intell. 42 (7) (2020) 1798–1805.
[118]
Li L., Li Y., Wu J., Ma L., Fang Y., Quality evaluation for image retargeting with instance semantics, IEEE Trans. Multimed. 23 (2021) 2757–2769.
[119]
Wang X., Shao F., Jiang Q., Fu Z., Meng X., Gu K., Ho Y.-S., Combining retargeting quality and depth perception measures for quality evaluation of retargeted stereopairs, IEEE Trans. Multimed. 24 (2022) 2422–2434.
[120]
Wang X., Shao F., Jiang Q., Chai X., Meng X., Ho Y.-S., List-wise rank learning for stereoscopic image retargeting quality assessment, IEEE Trans. Multimed. 24 (2022) 1595–1608.
[121]
Shao F., Li K., Lin W., Jiang G., Yu M., Dai Q., Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties, IEEE Trans. Image Process. 24 (10) (2015) 2971–2983.
[122]
Zhou Y., Chen Z., Li W., Hierarchical visual comfort assessment for stereoscopic image retargeting, Signal Process. Image Commun. 95 (3) (2021) 1–13.
[123]
Fu Z., Shao F., Jiang Q., Meng X., Ho Y.-S., Subjective and objective quality assessment for stereoscopic image retargeting, IEEE Trans. Multimed. 23 (2021) 2100–2113.
[124]
Jiang Q., Peng Z., Shao F., Gu K., Zhang Y., Zhang W., Lin W., StereoARS: Quality evaluation for stereoscopic image retargeting with binocular inconsistency detection, IEEE Trans. Broadcast. 68 (1) (2022) 43–57.
[126]
Ran J., Yang L., Ren T., Ling G., Wu G., Depth-aware salient object detection using anisotropic center-surround difference, Signal Process. Image Commun. 38 (2015) 115–126.
[127]
H. Hirschmuller, D. Scharstein, Evaluation of Cost Functions for Stereo Matching, in: 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.
[128]
Stereoscopic (3d imaging) database, 2015, Accessed on Jun. 2015. [Online] http://grouper.ieee.org/groups/3dhf/andftp://165.132.126.47/.
[129]
Islam M.B., Wong L.-K., Low K.-L., Wong C.-O., Aesthetics-driven stereoscopic 3-D image recomposition with depth adaptation, IEEE Trans. Multimed. 20 (11) (2018) 2964–2979.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Neurocomputing
Neurocomputing  Volume 579, Issue C
Apr 2024
307 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 02 July 2024

Author Tags

  1. Image retargeting
  2. Stereoscopic image
  3. Discrete method
  4. Continuous method
  5. Deep learning

Qualifiers

  • Short-survey

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media