Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Discriminative low-rank graph preserving dictionary learning with Schatten-p quasi-norm regularization for image recognition

Published: 31 January 2018 Publication History

Abstract

A discriminative low-rank graph preserving dictionary learning method is proposed.A Schatten-p quasi-norm regularization is imposed on each sub-dictionary.A discriminative graph preserving criterion is applied to the coding coefficients.The FIST and ALM algorithms are adopted to solve the optimization problem. The dictionary used in sparse coding plays a key role in sparse representation-based classification. A desired dictionary should have powerful representational and discriminative capability. In this paper, we propose a discriminative low-rank graph preserving dictionary learning (DLRGP_DL) method to learn a discriminative structured dictionary for sparse representation-based image recognition, in which training samples might be corrupted with relatively large noise. Specifically, we impose the Schatten-p quasi-norm regularization on sub-dictionaries to make them to be of low-rank, which can effectively reduce the negative effect of noise contained in training samples and make the learned dictionary pure and compact. To improve the discriminative capability of the learned dictionary, we apply a discriminative graph preserving criterion to coding coefficients during the dictionary learning process with the goal that the similar training samples from the same class have similar coding coefficients. The learned dictionary is first used for sparse coding, and then both the learned coding coefficients of training samples and the class-specific reconstruction errors are used for classification. The experimental results on four image datasets demonstrate the effectiveness and robustness of DLRGP_DL.

References

[1]
M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006) 3736-3745.
[2]
W. Dong, X. Li, L. Zhang, G. Shi, Sparsity-based image denoising via dictionary learning and structural clustering, 2011.
[3]
L. Qiao, S. Chen, X. Tan, Sparsity preserving projections with applications to face recognition, Pattern Recognit., 43 (2010) 331-341.
[4]
Z. Zhang, S. Yan, M. Zhao, Pairwise sparsity preserving embedding for unsupervised subspace learning and classification, IEEE Trans. Image Process., 22 (2013) 4640-4651.
[5]
J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009) 210-227.
[6]
J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using sparse coding for image classification, 2009.
[7]
K. Huang, S. Aviyente, Sparse representation for signal classification, 2006.
[8]
L. Zhang, W. Zhou, P. Chang, J. Liu, Z. Yan, T. Wang, F. Li, Kernel sparse representation-based classifier, IEEE Trans. Signal Process., 60 (2012) 1684-1695.
[9]
M. Yang, L. Zhang, J. Yang, D. Zhang, Regularized robust coding for face recognition, IEEE Trans. Image Process., 22 (2013) 1753-1766.
[10]
S. Huang, Y. Yang, D. Yang, L. Huangfu, X. Zhang, Class specific sparse representation for classification, Signal Process., 116 (2015) 38-42.
[11]
M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006) 4311-4322.
[12]
J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Discriminative learned dictionaries for local image analysis, 2008.
[13]
J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Supervised dictionary learning, 2009.
[14]
D.S. Pham, S. Venkatesh, Joint learning and dictionary construction for pattern recognition, 2008.
[15]
Q. Zhang, B. Li, Discriminative K-SVD for dictionary learning in face recognition, 2010.
[16]
Z. Jiang, Z. Lin, L.S. Davis, Learning a discriminative dictionary for sparse coding via label consistent K-SVD, 2011.
[17]
Z. Jiang, Z. Lin, L.S. Davis, Label consistent K-SVD: learning a discriminative dictionary for recognition, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 2651-2664.
[18]
M. Yang, L. Zhang, J. Yang, D. Zhang, Metaface learning for sparse representation based face recognition, 2010.
[19]
M. Yang, L. Zhang, X. Feng, D. Zhang, Fisher discrimination dictionary learning for sparse representation, 2011.
[20]
M. Yang, L. Zhang, X. Feng, D. Zhang, Sparse representation based Fisher discrimination dictionary learning for image classification, Int. J. Comput. Vis., 109 (2014) 209-232.
[21]
I. Ramirez, P. Sprechmann, G. Sapiro, Classification and clustering via dictionary learning with structured incoherence and shared features, 2010.
[22]
N. Zhou, Y. Shen, J. Peng, J. Fan, Learning inter-related visual dictionary for object recognition, 2012.
[23]
C. Wei, Y. Chao, Y. Yeh, Y. Wang, Locality-sensitive dictionary learning for sparse representation based classification, Pattern Recognit., 46 (2013) 1277-1287.
[24]
S. Li, M. Shao, Y. Fu, Cross-view projective dictionary learning for person re-identification, 2015.
[25]
M. Yang, D. Dai, L. Shen, L. Gool, Latent dictionary learning for sparse representation based classification, 2014.
[26]
H. Chang, M. Yang, J. Yang, Learning a structure adaptive dictionary for sparse representation based classification, Neurocomputing, 190 (2016) 124-131.
[27]
B. Liu, B. Shen, L. Gui, Y. Wang, X. Li, F. Yan, Y. Wang, Face recognition using class specific dictionary learning for sparse representation and collaborative representation, Neurocomputing, 204 (2016) 198-210.
[28]
Z. Dong, M. Pei, Y. Jia, Orthonormal dictionary learning and its application to face recognition, Image Vis. Comput., 51 (2016) 13-21.
[29]
Y. Quan, Y. Xu, Y. Sun, Y. Huang, Supervised dictionary learning with multiple classifier integration, Pattern Recognit., 55 (2016) 247-260.
[30]
S. Tariyal, A. Majumdar, R. Singh, M. Vatasa, Deep dictionary learning, IEEE Access, 4 (2016) 10096-10109.
[31]
Z. Zhang, F. Li, T.W.S. Chow, L. Zhang, S. Yan, Sparse codes auto-extractor for classification: a joint embedding and dictionary learning framework for representation, IEEE Trans. Signal Process., 64 (2016) 3790-3805.
[32]
M. Yang, H. Chang, W. Luo, Discriminative analysis-synthesis dictionary learning for image classification, Neurocomputing, 219 (2017) 404-411.
[33]
Y. Xu, Z. Li, J. Yang, D. Zhang, A survey of dictionary learning algorithms for face recognition, IEEE Access, 5 (2017) 8502-8514.
[34]
J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization, 2009.
[35]
G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, Y. Ma, Robust recovery of subspace structures by low-rank representation, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 171-184.
[36]
Z. Zhang, S. Yan, M. Zhao, Similarity preserving low-rank representation for enhanced data representation and effective subspace learning., Neural Networks, 53 (2014) 81-94.
[37]
G. Liu, H. Xu, J. Tang, Q. Liu, S. Yan, A deterministic analysis for LRR, IEEE Trans. Pattern Anal. Mach. Intell., 38 (2016) 417-430.
[38]
Z. Zhang, F. Li, M. Zhao, L. Zhang, S. Yan, Joint low-rank and sparse principal feature coding for enhanced robust representation and visual classification, IEEE Trans. Image Process., 25 (2016) 2429-2443.
[39]
Z. Zhang, C. Liu, M. Zhao, A sparse projection and low-rank recovery framework for handwriting representation and salient stroke feature extraction, ACM Trans. Intell. Syst. Technol., 6 (2015) 619-634.
[40]
X. Zhang, F. Sun, G. Liu, Y. Ma, Fast low-rank subspace segmentation, IEEE Trans. Knowl. Data Eng., 26 (2014) 1293-1297.
[41]
S. Li, Y. Fu, Learning robust and discriminative subspace with low-rank constraints, IEEE Trans. Neural Networks Learn. Syst., 27 (2016) 2160-2173.
[42]
L. Ma, C. Wang, B. Xiao, W. Zhou, Sparse representation for face recognition based on discriminative low-rank dictionary learning, 2012.
[43]
L. Li, S. Li, Y. Fu, Discriminative dictionary learning with low-rank regularization for face recognition, 2013.
[44]
L. Li, S. Li, Y. Fu, Learning low-rank and discriminative dictionary for image classification, Image Vis. Comput., 32 (2014) 814-823.
[45]
H. Nguyen, W. Yang, B. Sheng, C. Sun, Discriminative low-rank dictionary learning for face recognition, Neurocomputing, 173 (2016) 541-551.
[46]
M. Fazel, Ph.D. thesis, Department of Electrical Engineering, Stanford University, Stanford, CA, USA, 2002.
[47]
F. Nie, H. Wang, X. Cai, H. Huang, Robust matrix completion via joint Schatten p-norm and p-norm minimization, 2012.
[48]
F. Nie, H. Wang, H. Huang, C. Ding, Joint Schatten p-norm and p-norm robust matrix completion for missing value recovery, Knowl. Inf. Syst., 42 (2015) 525-544.
[49]
F. Nie, H. Huang, C. Ding, Low-rank matrix recovery via efficient Schatten p-norm minimization, 2012.
[50]
M. Malek-Mohammadi, M. Babaie-Zadeh, M. Skoglund, Performance guarantees for Schatten-p quasi-norm minimization in recovery of low-rank matrices, Signal Process., 114 (2014) 225-230.
[51]
L. Liu, W. Huang, D. Chen, Exact minimum rank approximation via Schatten p-norm minimization, J. Comput. Appl. Math., 267 (2014) 218-227.
[52]
K. Mohan, M. Fazel, Iterative reweighted algorithms for matrix rank minimization, J. Mach. Learn. Res., 13 (2012) 3441-3473.
[53]
X. Zhang, C. Xu, X. Sun, G. Baciu, Schatten-q regularizer constrained low rank subspace clustering model, Neurocomputing, 182 (2015) 36-47.
[54]
Y. Xie, S. Gu, Y. Liu, W. Zuo, W. Zhang, L. Zhang, Weighted Schatten p-norm minimization for image denoising and background subtraction, IEEE Trans. Image Process., 25 (2016) 4842-4857.
[55]
Z. Lin, M. Chen, L. Wu, Y. Ma, The augmented Lagrange Multiplier method for exact recovery of corrupted low-rank matrices, 2009.
[56]
L. Rosasco, A. Verri, M. Santoro, S. Mosci, S. Villa, Iterative Projection Methods for structured sparsity regularization, MIT Technical Report MIT-CSAIL-TR-2009-50, CBCL-282, 2009.
[57]
H. Rahmani, Q.H. Du, A. Mahmood, A. Mian, Discriminative human action classification using locality-constrained linear coding, Pattern Recognit. Lett., 72 (2015) 1-10.
[58]
S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, S. Lin, Graph embedding and extensions: a general framework for dimensionality reduction, IEEE Trans. Pattern Anal. Mach. Intell., 29 (2007) 40-51.
[59]
W. Yu, T. X., C. Liu, Face recognition using discriminant locality preserving projections, Image Vis. Comput., 24 (2006) 239-248.
[60]
J. Gui, Z. Sun, W. Jia, R. Hu, Y. Lei, S. Ji, Discriminant sparse neighborhood preserving embedding for face recognition, Pattern Recognit., 45 (2012) 2884-2893.
[61]
A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, Siam J. Imaging Sci., 2 (2009) 183-202.
[62]
S.J. Wright, R.D. Nowak, M.A.T. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans. Signal Process., 57 (2009) 2479-2493.
[63]
M. Turk, A. Pentland, Eigenfaces for recognition, J. Cogn. Neurosci., 3 (1991) 71-86.
[64]
S. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, An interior-point method for large-scale 1-regularized least squares, IEEE J. Select. Top. Signal Process., 1 (2007) 606-617.
[65]
A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From few to many: illumination cone models for face recognition under variable lighting and pose, IEEE Trans. Pattern Anal. Mach. Intell., 23 (2001) 643-660.
[66]
T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression database, IEEE Trans. Pattern Anal. Mach. Intell., 25 (2003) 1615-1618.
[67]
A.M. Martinez, The AR face database, 1998.
[68]
J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online learning for matrix factorization and sparse coding, J. Mach. Learn. Res., 11 (2010) 19-60.

Cited By

View all
  • (2023)Self-eliminating Discriminant Analysis Dictionary Learning for Pattern ClassificationNeural Processing Letters10.1007/s11063-023-11234-z55:7(9969-9993)Online publication date: 1-Dec-2023
  • (2022)Fuzzy Discriminative Block Representation Learning for Image Feature ExtractionIEEE Transactions on Image Processing10.1109/TIP.2022.319184631(4994-5008)Online publication date: 1-Jan-2022
  1. Discriminative low-rank graph preserving dictionary learning with Schatten-p quasi-norm regularization for image recognition

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Neurocomputing
    Neurocomputing  Volume 275, Issue C
    January 2018
    2070 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 31 January 2018

    Author Tags

    1. Dictionary learning
    2. Graph preserving
    3. Image recognition
    4. Low-rank
    5. Sparse representation

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 20 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Self-eliminating Discriminant Analysis Dictionary Learning for Pattern ClassificationNeural Processing Letters10.1007/s11063-023-11234-z55:7(9969-9993)Online publication date: 1-Dec-2023
    • (2022)Fuzzy Discriminative Block Representation Learning for Image Feature ExtractionIEEE Transactions on Image Processing10.1109/TIP.2022.319184631(4994-5008)Online publication date: 1-Jan-2022

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media