Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Design and investigation of variability aware sense amplifier for low power, high speed SRAM

Published: 01 January 2017 Publication History

Abstract

Reducing the input referred offset voltage of a sense amplifier (SA) provides remarkable returns in terms of reliability and energy conservation in static random access memory (SRAMs), which consume dominating portion of total power in modern ICs. High-reliability-applications benefit significantly from a low offset SA which can operate at high speed. However, low offset SAs tend to have significant overheads in terms of area, speed and complexity. In this paper we introduce a high speed SA that employs a self correction scheme to greatly minimize its input referred offset. Minimal calibrating circuitry limits the area and energy overheads. Sensing and failure mechanisms have been described for the first time in terms of resistance states of critical paths in SA, to provide a new and more basic dimension in the analysis of the offset problem. We implemented a CMOS logic- compatible, 4 Kb SRAM macro, in commercial UMC 65nm, using the proposed SA namely, self correcting sense amplifier (SCSA). Performance analysis reveals a 60% reduction in standard deviation of input referred offset in SCSA compared to conventional current latch sense amplifier (CLSA). Compared to another modern low offset alternative, SCSA have a 78% lower sensing delay and 19% lower active power consumption resulting in 82% reduction in the power delay product.

References

[1]
M.Imani, S.Patil, T.S.Rosic, HierarchicalDesign of robust and low data dependent FinFET based SRAM array, in: Proceedings of the IEEE/ACM International Symposium on Nanoscale Architecture(NANOARCH), 2015, pp. 6368.
[2]
B. Ebrahimi, R. Asadpour, A.A. Kusha, M. Pedram, A FinFET SRAM cell design with BTI robustness at high supply voltages and high yield at low supply voltages, Int. J. Circuit Theory Appl., 43 (2015) 2011-2024.
[3]
H. Zhu, V. Kursun, A comprehensive comparison of data stability enhancement techniques with novel nanoscale SRAM cells under parameter fluctuations, IEEE Trans. Circuits Syst. I. Reg. Pap., 61 (2011) 1062-1070.
[4]
M. Khayatzadeh, Y. Lian, Average-8T differential-sensing Subthreshold SRAM with bit Interleaving and 1kbits per Bitline, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 22 (2014) 971-982.
[5]
A. Teman, L. Pergament, O. Cohen, A. Fish, A 250mV 8kb 40nm ultra-low power 9T supply feedback SRAM (SF-SRAM), IEEE J. Solid-State Circuits, 46 (2011) 2713-2726.
[6]
H. Mostafa, M. Anis, M. Elmasry, Statistical SRAM read access yield improvement using negative capacitance circuit, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 21 (2013) 91-101.
[7]
J.S. Rad, R. Hughey, Power/energy minimization techniques for variability-aware high-performance 16-nm 6T-SRAM, IEEE Access, 46 (2016) 594-613.
[8]
T. Na, S. Woo, J. Kim, H. Jeong, S.O. Jung, Comparative study of various latch-type sense amplifiers, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 22 (2014) 425-429.
[9]
S.S. Rathod, A.K. Saxena, S. Dasgupta, A low-noise, process-variation-tolerant double-gate FinFET based sense amplifier, Microelectron. Reliab., 51 (2011) 773-780.
[10]
H. Attarzadeh, M. Sharifkhani, An auto-calibrated,dual-mode SRAM macro using a hybrid offset-cancelled sense amplifier, Microelectron. J., 45 (2014).
[11]
A. Bhavnagarwala, X. Tang, J.D. Meindl, The impact of intrinsic device fluctuations on CMOS SRAM cell stability, IEEE J. Solid-State Circuits, 36 (2001) 658-665.
[12]
S. Mukhopadhyay, K. Kim, H. Mahmoodi, K. Roy, Design of a process variation tolerant self-repairing SRAM for yield enhancement in nanoscaled CMOS, IEEE J. Solid-State Circuits, 42 (2007) 1370-1381.
[13]
B. Wicht, T. Nirschl, D.S. Landsiedel, Yield and speed optimization of a latch-type voltage sense amplifier, IEEE J. Solid-State Circuits, 39 (2004) 1148-1158.
[14]
E. Seevinck, P. J. V. Beers, H. Onrop, Current-mode techniques for high-speed VLSI circuits with application to Current sense amplifier for CMOS SRAM's, IEEE J. Solid-State Circuits, 26 (1991) 525-536.
[15]
R. Singh, N. Bhat, An offset compensation technique for latch type sense amplifiers in high-speed low-power SRAMs, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 12 (2004) 652-657.
[16]
B.S. Reniwal, V. Vijayvargiya, S.K. Vishvakarma, D. Dwivedi, Ultra-fast current mode sense amplifier for small ICELL SRAM in FinFET with improved offset tolerance, Int. J. Circuits, Syst. Signal Process., 35 (2016).
[17]
P.Bhatia, B.S.Reniwal, S.K.Vishvakarma, An offset-tolerant self-correcting sense amplifier for robust high speed SRAM, in: Proceedings of the IEEE VLSI Design and TestTest (VDAT), 2015, pp. 16.
[18]
M. Sharifkhani, E. Rahiminejad, S.M. Jahinuzzaman, M. Sachdev, A compact hybrid current/voltage sense amplifier with offset cancellation for high-speed SRAMs, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 19 (2011) 883-894.
[19]
S. Cosemans, W. Dehaene, F. Cathoot, A 3.6pJ/Access 480MHz, 128kb On-chip SRAM with 850 MHz boost mode in 90 nm CMOS with tunable sense amplifiers, IEEE J. Solid-State Circuits, 44 (2009) 2065-2077.
[20]
J.S. Shah, D. Nairn, M. Sachdev, An energy-efficient offset-cancelling sense amplifier, IEEE Trans. Circuits Syst. II: Express Briefs, 60 (2013) 477-481.
[21]
M.-F. Chang, S.-J. Shen, C.-C. Liu, C.-W. Wu, Y.-F. Lin, Y.-C. King, C.-J. Lin, H.-J. Liao, Y.-D. Chih, H. Yamauchi, An offset-tolerant Fast-random-read Current-sampling-based sense amplifier for small-cell-Current nonvolatile memory, IEEE J. Solid-State Circuits, 48 (2013) 864-877.
[22]
M.Bhargava, M.McCartney, A.Hoefler, K.Mai, Low-overhead, digital offset compensated, SRAM sense amplifiers, in: Proceedings of the IEEE Custom Integrated. Circuits ConferenceConference (CICC), 2009, pp. 705708.
[23]
Y. Sinangil, A.P. Chandrakasan, A 128 Kbit SRAM with an embedded energy monitoring circuit and sense-amplifier offset compensation using body biasing, IEEE J. Solid-State Circuits, 49 (2014) 864-877.
[24]
B. Razavi, Design of Analog Integrated Circuits, McGraw Hill, USA, 1999.
[25]
A.T. Do, Z.H. Kong, K.S. Yeo, J.Y.S. Low, Design and sensitivity analysis of a new current-mode sense amplifier for low-power SRAM, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 19 (2011) 196-204.
[26]
K.S.Yeo, W.L.Goh, Z.H.Kong, Q.X.Zhang, W.G.Yeo, High performance, low power current sense amplifier using a cross-coupled current mirror configuration, in: Proceedings of the IEEE Circuits Dev. Syst., vol.149(5), 2002, pp.308314.
[27]
A. Conte, A high-performance very low-voltage current sense amplifier for nonvolatile memories, IEEE J. Solid-State Circuits, 40 (2005) 507-514.

Cited By

View all
  • (2022)Low-Power SRAM Cell and Array Structure in Aerospace Applications: Single-Event Upset Impact AnalysisWireless Personal Communications: An International Journal10.1007/s11277-022-10084-7129:1(37-55)Online publication date: 15-Oct-2022
  • (2021)An investigation of a suppressed-drain cylindrical gate-all-around retrograde-doped heterospacer steep-density-film tunneling field-effect transistorJournal of Computational Electronics10.1007/s10825-021-01741-420:5(1702-1710)Online publication date: 1-Oct-2021
  • (2019)An Auto-Calibrated Sense Amplifier with Offset Prediction Approach for Energy-Efficient SRAMCircuits, Systems, and Signal Processing10.1007/s00034-018-0934-138:4(1482-1505)Online publication date: 1-Apr-2019
  1. Design and investigation of variability aware sense amplifier for low power, high speed SRAM

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Microelectronics Journal
    Microelectronics Journal  Volume 59, Issue C
    January 2017
    69 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 01 January 2017

    Author Tags

    1. Current latch sense amplifier
    2. Inter die variations
    3. Intra die variations
    4. Offset
    5. SRAM

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 09 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Low-Power SRAM Cell and Array Structure in Aerospace Applications: Single-Event Upset Impact AnalysisWireless Personal Communications: An International Journal10.1007/s11277-022-10084-7129:1(37-55)Online publication date: 15-Oct-2022
    • (2021)An investigation of a suppressed-drain cylindrical gate-all-around retrograde-doped heterospacer steep-density-film tunneling field-effect transistorJournal of Computational Electronics10.1007/s10825-021-01741-420:5(1702-1710)Online publication date: 1-Oct-2021
    • (2019)An Auto-Calibrated Sense Amplifier with Offset Prediction Approach for Energy-Efficient SRAMCircuits, Systems, and Signal Processing10.1007/s00034-018-0934-138:4(1482-1505)Online publication date: 1-Apr-2019

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media