Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Thermal resistance modeling in FDSOI transistors with industry standard model BSIM-IMG

Published: 01 October 2016 Publication History

Abstract

The channel in Fully Depleted Silicon On Insulator (FDSOI) transistors is completely isolated from the substrate via buried oxide (BOX) and from the sides by shallow trench isolations, which results in high thermal resistance (Rth). Further, Rth increases with reduction in channel length (Lg). In this paper, we have proposed a compact model for the geometry and temperature dependence of Rth in FDSOI transistors. The model is validated against experimental and Technology Computer Aided Design (TCAD) data. The proposed model is implemented in the independent multi-gate model (BSIM-IMG) for FDSOI transistors. Graphical abstractThe channel in Fully Depleted Silicon On Insulator (FDSOI) transistors is completely isolated from the substrate via buried oxide (BOX) and from the sides by shallow trench isolations, which results in high thermal resistance (Rth). Further, Rth increases with reduction in channel length (Lg). In this paper, we have proposed a compact model for the geometry and temperature dependence of Rth in FDSOI transistors. The model is validated against experimental and Technology Computer Aided Design (TCAD) data. We also validate the radio-frequency (RF) model with measured high frequency data. The proposed model is implemented in the independent multigate model (BSIM-IMG) for FDSOI transistors.Display Omitted HighlightsGeometrical scaling of thermal resistance in FDSOI transistor has been analyzed.A new behavioral model for thermal resistance scaling has been proposed.The model is validated against experimental and Technology Computer Aided Design (TCAD) data.The BSIM-IMG model is validated on the measured RF characteristics for wide bias and frequency ranges.

References

[1]
S. Markov, A. Zain, B. Cheng,¿A. Asenov, Statistical variability in scaled generations of n-channel UTB-FD-SOI MOSFETs under the influence of RDF, LER, OTF and MGG, in: Proceedings of SOI Conference, 2012, pp. 1-2.
[2]
J.P. Noel, O. Thomas, M.A. Jaud, O. Weber, T. Poiroux, C. Fenouillet-Beranger, P. Rivallin, P. Scheiblin, F. Andrieu, M. Vinet, O. Rozeau, F. Boeuf, O. Faynot, A. Amara, Multi-vt UTBB FDSOI device architectures for low-power cmos circuit, IEEE Trans. Electron Devices, 58 (2011) 2473-2482.
[3]
C. Fenouillet-Beranger, P. Perreau, L. Tosti, O. Thomas, J.P. Noel, O. Weber, F. Andrieu, M. Cassé, X. Garros, T. Benoist, S. Haendler, A. Bajolet, F. Bouf, K.K. Bourdelle, F. Boedt,¿O. Faynot, Low power UTBOX and back plane (BP) FDSOI technology for 32nm node and below, in: Proceedings¿of IEEE International Conference on IC Design Technology, 2011, pp. 1-4.
[4]
Q. Liu, A. Yagishita, N. Loubet, A. Khakifirooz, P. Kulkarni, T. Yamamoto, K. Cheng, M. Fujiwara, J. Cai, D. Dorman, S. Mehta, P. Khare, K. Yako, Y. Zhu, S. Mignot, S. Kanakasabapathy, S. Monfray, F. Boeuf, C. Koburger, H. Sunamura, S. Ponoth, A. Reznicek, B. Haran, A. Upham, R. Johnson, L.F. Edge, J. Kuss, T. Levin, N. Berliner, E. Leobandung, T. Skotnicki, M. Hane, H. Bu, K. Ishimaru, W. Kleemeier, M. Takayanagi, B. Doris,¿R. Sampson, Impact of back bias on ultra-thin body and BOX (UTBB) devices, in: Proceedings of Symposium on VLSI Technology (VLSIT),¿2011, pp. 160-161
[5]
J. Colinge, FinFETs and Other Multi-Gate Transistors, Springer US, 2008, 2007.
[6]
Q. Xie, C.J. Lee, J. Xu, C. Wann, J. Sun, Y. Taur, Comprehensive analysis of short-channel effects in ultrathin SOI MOSFETs, IEEE Trans. Electron Devices, 60 (2013) 1814-1819.
[7]
L. McDaid, S. Hall, P. Mellor, W. Eccleston, J. Alderman, Physical origin of negative differential resistance in SOI transistors, Electron Lett., 25 (1989) 827-828.
[8]
R. Tu, C. Wann, J. King, P.-K. Ko, C. Hu, An ac conductance technique for measuring self-heating in SOI MOSFET's, IEEE Electron Device Lett., 16 (1995) 67-69.
[9]
E. Pop, R. Dutton, K. Goodson, Thermal analysis of ultra-thin body device scaling SOI and FinFet devices, Tech. Dig. IEDM, 12 (2003) 36.6.1-36.6.4.
[10]
BSIM4 Technical Manual. Online. Available: URL {http://www-device.eecs.berkeley.edu/bsim/?page=BSIM4}
[11]
Sentaurus Device User Guide, Synopsys, Inc., Mountain View, CA, Version Z-2007.03, March 2007.
[12]
W. Jin, W. Liu, S. Fung, C. Chan-Philip, C. Hu, SOI thermal impedance extraction methodology and its significance for circuit simulation, IEEE Trans. Electron Devices, 48 (2001) 730-736.
[13]
BSIMSOIv4.5.0 Technical Manual. Online. Available: URL {http://www-device.eecs.berkeley.edu/bsim/?page=BSIMSOI_LR}
[14]
S. Khandelwal, Y.S. Chauhan, D.D. Lu, S. Venugopalan, M.Ahosan Ul Karim, A.B. Sachid, B.Y. Nguyen, O. Rozeau, O. Faynot, A.M. Niknejad, C. Hu, BSIM-IMG, IEEE Trans. Electron Devices, 59 (2012) 2019-2026.
[15]
P. Kushwaha, N. Paydavosi, S. Khandelwal, C. Yadav, H. Agarwal, J.-P. Duarte, C. Hu, Y.S. Chauhan, Modeling the impact of substrate depletion in FDSOI MOSFETs, Solid-State Electron., 104 (2015) 6-11.
[16]
S. Khandelwal, J. Watts, E. Tamilmani,¿L. Wagner, Scalable thermal resistance model for single and multi-finger silicon-on-insulator MOSFETs, in: Proceedings of IEEE International Conference on Microelectronic Test Structures (ICMTS), April 2011, pp. 182-185
[17]
Y. Morita, R. Tsuchiya, T. Ishigaki, N. Sugii, T. Iwamatsu, T. Ipposhi, H. Oda, Y. Inoue, K. Torii,¿S. Kimura, Smallest Vth variability achieved by intrinsic silicon on thin BOX (SOTB) CMOS with single metal gate, in: Proceedings of Symposium on VLSI Technology (VLSIT), 2008, pp. 166-167
[18]
M. Shrivastava, M. Agrawal, S. Mahajan, H. Gossner, T. Schulz, D.K. Sharma, V.R. Rao, Physical insight toward heat transport and an improved electrothermal modeling framework for finfet architectures, IEEE Trans. Electron Devices, 59 (2012) 1353-1363.
[19]
K. Etessam-Yazdani, R. Hussin,¿M. Asheghi, Impact of scaling on thermal behavior of Silicon-on-Insulator transistors, in: The Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, May 2006, pp. 1257-1264
[20]
K. Oshima, S. Cristoloveanu, B. Guillaumot, H. Iwai, S. Deleonibus, Advanced SOI MOSFETs with buried alumina and ground plane, Solid-State Electron., 48 (2004) 907-917.
[21]
M. Berger, Z. Chai, Estimation of heat transfer in SOI-MOSFETs, IEEE Trans. Electron Devices, 38 (1991) 871-875.
[22]
T. Takahashi, T. Matsuki, T. Shinada, Y. Inoue, K. Uchida, Comparison of self-heating effect (SHE) in short-channel bulk and ultra-thin BOX SOI MOSFETs, Tech. Dig. IEDM (2013) 7.4.1-7.4.4.
[23]
BSIMIMG102.7.0 Technical Manual. Online. Available: URL {http://www-device.eecs.berkeley.edu/bsim/?page=BSIMIMG_LR}
[24]
BSIMCMG110.0.0 Technical Manual. Online. Available: URL {http://www-device.eecs.berkeley.edu/bsim/?page=BSIMCMG_LR}
[25]
BSIM6.1.1 Technical Manual. Online. Available: URL {http://www-device.eecs.berkeley.edu/bsim/?page=BSIM6_LR}
[26]
H. Agarwal, S. Venugopalan, M.A. Chalkiadaki, N. Paydavosi, J.P. Duarte, S. Agnihotri, C. Yadav, P. Kushwaha, Y.S. Chauhan, C.C. Enz, A. Niknejad,¿C. Hu, Recent enhancements in BSIM6 bulk MOSFET model, in: Proceedings of IEEE International Conference on Simulation of Semiconductor Processes and Devices, April 2013, pp. 53-56.
[27]
W. Wu, X. Li, G. Gildenblat, G. Workman, S. Veeraraghavan, C. McAndrew, R.v. Langevelde, G. Smit, A. Scholten, D. Klaassen, J. Watts, PSP-SOI, Solid-State Electron., 53 (2009) 18-29.
[28]
HiSIM-SOI 1.0.0 User's Manual. Online. Available: URL {http://www.hisim.hiroshima-u.ac.jp/}
[29]
E. Pop, Energy dissipation and transport in nanoscale devices, Nano Res., 3 (2010) 147-169.
[30]
S. Lee, R. Wachnik, P. Hyde, L. Wagner, J. Johnson, A. Chou, A. Kumar, S. Narasimha, T. Standaert, B. Greene, T. Yamashita, J. Johnson, K. Balakrishnan, H. Bu, S. Springer, G. Freeman, W. Henson,¿E. Nowak, Experimental analysis and modeling of self heating effect in dielectric isolated planar and fin devices, in: Proceedings¿of Symposium on VLSI Technology (VLSIT), 2013, pp. T248-T249.
[31]
P. Canfield, S. Lam, D. Allstot, Modeling of frequency and temperature effects in GaAs MESFETs, IEEE J. Solid-State Circuits, 25 (1990) 299-306.
[32]
R. Howes, W. Redman-White, A small-signal model for the frequency-dependent drain admittance in floating-substrate MOSFET's, IEEE J. Solid-State Circuits, 27 (1992) 1186-1193.
[33]
D.J. Walkey, T.J. Smy, T. Macelwee, M. Maliepaard, Compact representation of temperature and power dependence of thermal resistance in Si, InP and GaAs substrate devices using linear models, Solid-State Electron., 46 (2002) 819-826.
[34]
C. Anghel, R. Gillon, A. Ionescu, Self-heating characterization and extraction method for thermal resistance and capacitance in HV MOSFETs, IEEE Electron Device Lett., 25 (2004) 141-143.
[35]
F. Ichikawa, Y. Nagatomo, Y. Katakura, M. Itoh, S. Itoh, H. Matsuhashi, T. Ichimori, N. Hirashita, S. Baba, Fully depleted SOI process and device technology for digital and RF applications, Solid-State Electron., 48 (2004) 999-1006.
[36]
S. Makovejev, B. Kazemi-Esfeh, V. Barral, N. Planes, M. Haond, D. Flandre, J.-P. Raskin, V. Kilchytska, Wide frequency band assessment of 28nm FDSOI technology platform for analogue and RF applications, Solid-State Electron., 24 (2015) 414-416.
[37]
M.A. Karim, Y.S. Chauhan, S. Venugopalan, A.B. Sachid, D.D. Lu, B.Y. Nguyen, O. Faynot, A.M. Niknejad, C. Hu, Extraction of isothermal condition and thermal network in UTBB SOI MOSFETs, IEEE Electron Device Lett., 33 (2012) 1306-1308.
[38]
S. Makovejev, V. Kilchytska, M. K. M. Arshad, D. Flandre, F. Andrieu, O. Faynot, S. Olsen,¿J.P. Raskin, Self-heating and substrate effects in ultra-thin body ultra-thin BOX devices, in: Proceedings of 12th International Conference on Ultimate Integration on Silicon (ULIS), 2011, pp. 1-4.
[39]
A.J. Scholten, G.D.J. Smit, R.M.T. Pijper, L.F. Tiemeijer, H.P. Tuinhout, J.L.P.J. van der Steen, A. Mercha, M. Braccioli, D.B.M. Klaassen, Experimental assessment of self-heating in SOI FinFETs, in: IEEE International Electron Devices Meeting (IEDM), 2009, pp. 1-4
[40]
P. Kushwaha, H. Agarwal, S. Khandelwal, J. P. Duarte, A. Medury, C. Hu,¿Y.S. Chauhan, BSIM-IMG: Compact model for RF-SOI MOSFETs, in: Proceedings of IEEE International Conference on Device Research (DRC), 2015, pp. 287-288.
[41]
P. Kushwaha, S. Khandelwal, J.P. Duarte, C. Hu, Y.S. Chauhan, RF modeling of FDSOI transistors using industry standard BSIM-IMG model, IEEE Trans. Microw. Theory Tech., 64 (2016) 1745-1751.

Cited By

View all
  • (2022)Physical analysis of β-Ga2O3 gate-all-around nanowire junctionless transistors: short-channel effects and temperature dependenceJournal of Computational Electronics10.1007/s10825-021-01837-x21:1(197-205)Online publication date: 28-Jan-2022
  1. Thermal resistance modeling in FDSOI transistors with industry standard model BSIM-IMG

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Microelectronics Journal
      Microelectronics Journal  Volume 56, Issue C
      October 2016
      177 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 01 October 2016

      Author Tags

      1. BSIM-IMG
      2. Compact model
      3. FDSOI transistor
      4. Self-heating effect (SHE)

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 19 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Physical analysis of β-Ga2O3 gate-all-around nanowire junctionless transistors: short-channel effects and temperature dependenceJournal of Computational Electronics10.1007/s10825-021-01837-x21:1(197-205)Online publication date: 28-Jan-2022

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media