Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Wake-up radio receiver based power minimization techniques for wireless sensor networks

Published: 01 December 2014 Publication History

Abstract

In a short period of time Wireless Sensor Networks (WSN) captured the imagination of many researchers with the number of applications growing rapidly. The applications span large domains including mobile digital health, structural and environmental monitoring, smart home, energy efficient buildings, agriculture, smart cities, etc. WSN are also an important contributor to the fast emerging Internet of Things infrastructure. Some of the design specifications for WSN include reliability, accuracy, cost, deployment versatility, power consumption, etc. Power consumption is (most often) the dominant constraint in designing such systems. This constraint has multi-dimensional implications such as battery type and size, energy harvester design, lifetime of the deployment, intelligent sensing capability, etc. Power optimization techniques have to explore a large design search space. Energy neutral system implementation is the ultimate goal in wireless sensor networks ensuring a perpetual/greener use and represents a hot topic of research. Several recent advances promise significant reduction of the overall sensor network power consumption. These advances include novel sensors and sensor interfaces, low energy wireless transceivers, low power processing, efficient energy harvesters, etc. This paper reviews a number of system level power management methodologies for Wireless Sensor Networks. Especially, the paper is focusing on the promising technology of nano-Watt wake-up radio receiver and its combination with mature power management techniques to achieve better performance. Some of the presented techniques are then applied in the context of low cost and battery powered toy robots.

References

[1]
T. Arampatzis, J. Lygeros, S. Manesis, A survey of applications of wireless sensors and wireless sensor networks, Intelligent Control, 2005, in: Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation, 2005, pp.719-724, 27-29.
[2]
M. Healy, T. Newe, E. Lewis, Wireless sensor node hardware: a review, Sensors, IEEE (2008) 621-624.
[3]
A. Weddell, M. Magno, G. Merrett, D. Brunelli, B. Al-Hashimi, L. Benini, A survey of multi-source energy harvesting systems, Des. Autom. Test Eur. Conf. Exhib. (DATE) (2013) 905-908.
[4]
O. Berder, O. Sentieys, Powwow: Power optimized hardware/software framework for wireless motes, in: Proceedings of the Workshop on Ultra-Low Power Sensor Networks (WUPS), co-located with ARCS 2010, pp. 229-233.
[5]
D. Boyle, B. Srbinovski, E. Popovici, B. O'Flynn, Energy analysis of industrial sensors in novel wireless SHM systems, Sensors IEEE (2012) 1-4.
[6]
J. Barton, B. O'Flynn, S Bellis, A. Lynch, M. Morris, S.C. O'Mathuna, A miniaturised modular platform for wireless sensor networks, in: Proceedings of the 2005 European Conference on Circuit Theory and Design, 2005, 3, no., pp.III/35,III/38 vol. 3, 28 August-2 September, 2005.
[7]
H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication, Cambridge University Press, Cambridge, England, 2008.
[8]
V. Jelicic, M. Magno, D. Brunelli, V. Bilas and L. Benini, Analytic comparison of wake-up receivers for WSNs and benefits over the wake-on radio scheme, in: Proceedings of the 7th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks, 2012, pp. 99-106.
[9]
S.J. Marinkovic, E.M. Popovici, Nano-power wireless wake-up receiver with serial peripheral interface, Sel. Areas Commun. IEEE J., 29 (2011) 1641-1647.
[10]
E. Popovici, D. Boyle, S. O'Connell, S. Faul, P. Angove, J. Buckley, B. O'Flynn, J. Barton, C. O'Mathuna, The s-Mote: a versatile heterogeneous multi-radio platform for wireless sensor networks applications, in: Proceedings of the 20th European Conference on Circuit Theory and Design (ECCTD), 2011, vol., no., pp.421,424, 29-31 August, 2011.
[11]
S. Tang, H. Yomo, Y. Kondo, S. Obana, Wake-up receiver for radio-on-demand wireless LANs, EURASIP J. Wireless Commun. Netw., 42 (2012) 1-13.
[12]
M. Magno, D. Boyle, D. Brunelli, B. O'Flynn, E. Popovici, L. Benini, Extended wireless monitoring through intelligent hybrid energy supply, Ind. Electron. IEEE Trans., 61 (2014) 1871-1881.
[13]
B. Chao, L. Harrison, Re-designing normally-on load switches with zero-power MOSFETs reduces power consumption, Adv. Linear Devices (2008). {www.aldinc.com}
[14]
M. Magno, N. Jackson, A. Mathewson, L. Benini, E. Popovici, Combination of hybrid energy harvesters with MEMS piezoelectric and nano-Watt radio wake-up to extend lifetime of system for wireless sensor nodes, in: Proceedings of the 2013, 26th International Conference on, Architecture of Computing Systems (ARCS), pp. 19-22.
[15]
J.M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits: A Design Perspective, Prentice Hall, 2002.
[16]
M. Day, MSP430 Power Solutions, in: Proceedings of the MSP430 Advanced Technical Conference, 2008.
[17]
D. Boyle, M. Magno, B. O'Flynn, D. Brunelli, E. Popovici, L. Benini, Towards persistent structural health monitoring through sustainable wireless sensor networks, in : Proceedings of the Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2011 pp.323-328.
[18]
P. Moinzadeh, K.A. Mechitov, R. Shiftehfar, T.F. Abdelzaher, G. Agha, B.F. Spencer, Dynamic Voltage Scaling Techniques for Energy Efficient Synchronized Sensor Network Design, University of Ilinois, Urbana Champaign, 2011.
[19]
S. Marinkovic, E. Popovici, E. Jovanov, Springer, Berlin Heidelberg, 2013.
[20]
V. Jelicic, M. Magno, D. Brunelli, V. Bilas, L. Benini, An energy efficient multimodal Wireless Video Sensor Network with eZ430-RF2500 modules, in: Proceedings of the 5th International Conference on Pervasive Computing and Applications (ICPCA), 2010 pp.161-166.
[21]
S. Ullah, K.S. Kwak, An ultra low-power and traffic-adaptive medium access control protocol for wireless body area network, J. Med. Syst. (2010) 1-10.
[22]
M. Miller, N. Vaidya, A MAC protocol to reduce sensor network energy consumption using a wake-up radio, IEEE Trans. Mob. Comput. (2005) 228-242.
[23]
J. Ansari, D. Pankin, P. Mahonen, Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications, Int. J. Wireless Inf. Netw., 16 (2009) 118-130.
[24]
M. Magno, S. Marinkovic, D. Brunelli, E. Popovici, B. O'Flynn, L. Benini, Smart power unit with ultra low power radio trigger capabilities for wireless sensor networks, Des. Autom. Test Eur. Conf. Exhib. (DATE) (2012) 75-80.
[25]
S. Marinkovic, E. Popovici, Ultra low power signal oriented approach for wireless health monitoring, Sensors, 12 (2012) 7917-7937.
[26]
B. Otis, J. Rabaey, "Ultra Low Power Wireless Technologies for Sensor networks", Springer, New York, USA, 2007.
[27]
M.A. Pasha, S. Derrien, O. Sentieys, System-level synthesis for wireless sensor node controllers: a complete design flow, ACM Trans. Des. Autom. Electron. Syst., 17 (2012) 24.
[28]
S. Wen-Chan, R. Jurdak, B. Lee, D. Abbott, High sensitivity wake-up radio using spreading codes: design, evaluation, and applications, EURASIP J. Wire. Commun. Netw., 2011 (2011) 1-14.
[29]
J.M. Gilbert, F. Balouchi, Comparison of energy harvesting systems for wireless sensor networks, Int. J. Autom. Comp., 5 (2008) 334-347.
[30]
H.C. Powell, A.T. Barth, and J. Lach. 2009. Dynamic voltage-frequency scaling in body area sensor networks using COTS components, in: Proceedings of the Fourth International Conference on Body Area Networks (BodyNets '09). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, Article 15, 8 pages.
[31]
K. Sukun, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, M. Turon, Health monitoring of civil infrastructures using wireless sensor networks,in: Proceedings of the 6th International Symposium on Information Processing in Sensor Networks, 2007 IPSN 2007. vol., no., pp.254, 263, 25-27 April 2007.
[32]
D. Raskovic, D. Giessel, Dynamic voltage and frequency scaling for on-demand performance and availability of biomedical embedded systems, Inf. Technol. Biomed. IEEE Trans., 13 (2009) 903-909.
[33]
J. Gummeson, D. Ganesan, M.D. Corner, P. Shenoy, An adaptive link layer for heterogeneous multi-radio mobile sensor networks, IEEE J. Sel. Areas Commun. (2010).
[34]
E. Popovici, S. O'Connell, S. Faul, P. Angove, J. Buckley, B. O'Flynn, J. Barton, S. O'Mathuna, The s-Mote: a versatile heterogeneous multi-radio platform for wireless sensor networks applications, IEEE Eur. Conf. Circuit Theory Des. (2011) 421-424.
[35]
J. Buckley, B. O'Flynn, L. Loizou, P. Haigh, D: Boyle, P. Angove, J. Barton, C. O'Mathuna, E. Popovici, S. O'Connell, A novel and miniaturized 433/868MHz multi-band wireless sensor platform for body sensor network applications, in: Proceedings of the Ninth International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2012 vol., no., pp.63,66, 9-12 May 2012.
[36]
F. Edwards-Murphy, M. Magno, A. Frost, A. Long, N. Corbett, E. Popovici, Demo abstract: smartSync; when toys meet wireless sensor networks, Lect. Notes Electr. Eng., 281 (2014) 91-96.
[37]
F. Edwards-Murphy, M. Magno, E. Popovici, Design and implementation of a heterogeneous, power efficient wireless sensor network for smart toys, in: Proceedings of the Cyber-Physical Systems Week, Berlin 2014.
[38]
V. Jelicic, M. Magno, D. Brunelli, V. Bilas, L. Benini, Benefits of wake-up radio in energy-efficient multimodal surveillance wireless sensor network, IEEE Sens. J., 14 (2014) 3210-3220.
[39]
M. Magno, D. Boyle, D. Brunelli, E. Popovici, L. Benini, Ensuring survivability of resource-intensive sensor networks through ultra-low power overlays, Ind. Inf. IEEE Trans., 10 (2014) 946-956.
[40]
N.L. Trong, M. Magno, A. Pegatoquet, O. Berder, O. Sentieys, and E. Popovici. Ultra low power asynchronous MAC protocol using wake-up radio for energy neutral WSN, in: Proceedings of the 1st ACM International Workshop on Energy Neutral Sensing Systems, p. 10. 2013
[41]
M. Magno, F. Tombari, D. Brunelli, L. Di Stefano, L. Benini, Multimodal video analysis on self-powered resource-limited wireless smart camera, Emerg. Sel. Top. Circuits Sys. IEEE J., 3 (2013) 223-235.
[42]
M.O. Farooq, T. Kunz, Operating systems for wireless sensor networks: a survey, Sensors, 11 (2011) 5900-5930.
[43]
U. Kulau, W-B. Pottner, F. Busching, L. Wolf, Demo: a node's life -- increasing WSN lifetime by dynamic voltage scaling, in: Proceedings of the 2013 IEEE International Conference on Distributed Computing in Sensor Systems, pp. 472-473, 2013.

Cited By

View all
  • (2021)A wake-up receiver with ad-hoc antenna co-design for wearable applications2016 IEEE Sensors Applications Symposium (SAS)10.1109/SAS.2016.7479632(1-6)Online publication date: 10-Mar-2021
  • (2019)TinyBirdProceedings of the 7th International Workshop on Energy Harvesting & Energy-Neutral Sensing Systems10.1145/3362053.3363498(1-7)Online publication date: 10-Nov-2019
  • (2018)Energy-efficient wake-up radio protocol using optimal sensor-selection for IoT2018 IEEE Wireless Communications and Networking Conference (WCNC)10.1109/WCNC.2018.8377328(1-6)Online publication date: 15-Apr-2018
  • Show More Cited By
  1. Wake-up radio receiver based power minimization techniques for wireless sensor networks

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Microelectronics Journal
      Microelectronics Journal  Volume 45, Issue 12
      December 2014
      252 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 01 December 2014

      Author Tags

      1. Dynamic frequency voltage scaling
      2. Multi-radio wireless sensor networks
      3. Power gating
      4. Power management
      5. Smart harvesting
      6. Wake-up radio receiver

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 01 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2021)A wake-up receiver with ad-hoc antenna co-design for wearable applications2016 IEEE Sensors Applications Symposium (SAS)10.1109/SAS.2016.7479632(1-6)Online publication date: 10-Mar-2021
      • (2019)TinyBirdProceedings of the 7th International Workshop on Energy Harvesting & Energy-Neutral Sensing Systems10.1145/3362053.3363498(1-7)Online publication date: 10-Nov-2019
      • (2018)Energy-efficient wake-up radio protocol using optimal sensor-selection for IoT2018 IEEE Wireless Communications and Networking Conference (WCNC)10.1109/WCNC.2018.8377328(1-6)Online publication date: 15-Apr-2018
      • (2018)Zero-power receiver for touch communication and touch sensingProceedings of the 17th ACM/IEEE International Conference on Information Processing in Sensor Networks10.1109/IPSN.2018.00038(150-151)Online publication date: 11-Apr-2018
      • (2017)An accurate 1-V threshold voltage reference for ultra-low power applicationsMicroelectronics Journal10.1016/j.mejo.2017.03.01163:C(155-159)Online publication date: 1-May-2017
      • (2016)KinetiSeeProceedings of the 15th International Conference on Information Processing in Sensor Networks10.5555/2959355.2959423(1-2)Online publication date: 11-Apr-2016
      • (2016)Alternative approach to design matching network for differential drive rectifier used in RF energy harvestingMicroelectronics Journal10.1016/j.mejo.2016.10.00858:C(39-43)Online publication date: 1-Dec-2016

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media