Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Back-end-of-line compatible contact materials for carbon nanotube based interconnects

Published: 02 April 2015 Publication History

Abstract

Display Omitted Growth and characterization of CNT based interconnects.Evaluation of the optimal BEOL-compatible metal-CNT interface.Nitrides provide a low contact resistance at the bottom metallization.A Ta-CNT interface has the lowest contact resistance for interconnect applications. Carbon nanotube (CNT) based interconnects with different metal-CNT contacts were prepared and characterized. All investigated contact materials are compatible with the back-end-of-line processing. For interconnect applications the length of the metal-CNT contact interface has to be extremely short, and has to have a low contact resistance. In order to provide a reliable interface between the metal and the CNTs the applied metal should form stable carbides. Indeed, Ta and Ti are beneficial in terms of contact resistance for the top metallization with Ta even outperforming Ti. However, those materials are non-noble metals and hence can oxidize. Besides the metals Ta and Ti, also their metal nitrides were investigated as bottom metallization. They outperform the pure metals since TaN and TiN are more resistant towards oxidation during subsequent processing steps. However, an extremely thin Ta layer also proves beneficial since in this case the formation of a conductive TaC during the CNT growth process is feasible. Unfortunately, insufficiently controlled oxidation processes occur which impairs the reproducibility and hence causes the average via to have a higher resistance.

References

[1]
The international technology roadmap for semiconductors, Online, 2011.
[2]
W. Steinhogl, G. Schindler, G. Steinlesberger, M. Engelhardt, Phys. Rev. B, 66 (2002) 075414-075417.
[3]
C.-Y. Lee, M.-P. Lu, K.-F. Liao, W.-F. Lee, C.-T. Huang, S.-Y. Chen, L.-J. Chen, J. Phys. Chem. C, 113 (2009) 2286-2289.
[4]
X. Liu, J. Zhu, C. Jin, L.-M. Peng, D. Tang, H. Cheng, Nanotechnology, 19 (2008) 085711-085714.
[5]
A. Naeemi, J. Meindl, Performance benchmarking for graphene nanoribbon, carbon nanotube, and Cu interconnects, in: 2008 IEEE International Interconnect Technology Conference, Burlingame, 183-185, 2008.
[6]
B. Wei, R. Vajtai, P. Ajayan, Appl. Phys. Lett., 79 (2001) 1172-1174.
[7]
P. Kim, L. Shi, A. Majumdar, P. McEuen, Phys. Rev. Lett., 87 (2001) 215502.
[8]
H. Li, W. Lu, J. Li, X. Bai, C. Gu, Phys. Rev. Lett., 95 (2005) 086601.
[9]
N. Chiodarelli, S. Masahito, Y. Kashiwagi, Y. Li, K. Arstila, O. Richard, D.J. Cott, M. Heyns, S. De Gendt, G. Groeseneken, P.M. Vereecken, Nanotechnology, 22 (2011) 085302.
[10]
S. Lee, B.-J. Lee, Surf. Coat. Technol., 206 (2012) 3142-3145.
[11]
J. Dijon, A. Fournier, P.D. Szkutnik, H. Okuno, C. Jayet, M. Fayolle, Diamond Relat. Mater., 19 (2010) 382-388.
[12]
Y. Yamazaki, M. Katagiri, N. Sakuma, M. Suzuki, S. Sato, M. Nihei, M. Wada, N. Matsunaga, T. Sakai, Y. Awano, Appl. Phys. Expr., 3 (2010) 055002.
[13]
H. Ishii, S. Roche, N. Kobayashi, K. Hirose, Phys. Rev. Lett., 104 (2010) 116801.
[14]
P. Sundqvist, F.J. Garcia-Vidal, F. Flores, M. Moreno-Moreno, C. Gomez-Navarro, J.S. Bunch, J. Gomez-Herrero, Nano Lett., 7 (2007) 2568-2573.
[15]
S.C. Lim, J.H. Jang, D.J. Bae, G.H. Han, S. Lee, I.-S. Yeo, Y.H. Lee, Appl. Phys. Lett., 95 (2009) 261403-261428.
[16]
N. Nemec, D. Tomanek, G. Cuniberti, Phys. Rev. Lett., 96 (2006) 076802.
[17]
M. Katagiri, M. Wada, B. Ito, Y. Yamazaki, M. Suzuki, M. Kitamura, T. Saito, A. Isobayashi, A. Sakata, N. Sakuma, A. Kajita, T. Sakai, Jpn. J. Appl. Phys., 51 (2012) 05ED02.
[18]
H. Fiedler, S. Hermann, S. Schulz, T. Gessner, Influence of copper on the catalytic carbon nanotube growth process, in: IEEE International Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), Dresden, 1-3, 2011.
[19]
D. Mann, A. Javey, J. Kong, Q. Wang, H. Dai, Nano Lett., 3 (2003) 1541-1544.
[20]
M.S. Dresselhaus, A. Jorio, A.G. Souza, Eng. Sci., 368 (2010) 5355-5377.
[21]
M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys., 9 (2007) 1276-1290.
[22]
H. Fiedler, M. Toader, S. Hermann, R.D. Rodriguez, E. Sheremet, M. Rennau, S. Schulze, T. Waechtler, M. Hietschold, D.R. Zahn, S.E. Schulz, T. Gessner, ECS J. Solid State Sci. Technol., 1 (2012) M1-M5.
[23]
H. Fiedler, M. Toader, S. Hermann, R.D. Rodriguez, E. Sheremet, M. Rennau, S. Schulze, T. Waechtler, M. Hietschold, D.R. Zahn, S.E. Schulz, T. Gessner, Microelectron. Eng., 120 (2014) 210-215.
[24]
A. Schulze, T. Hantschel, A. Dathe, P. Eyben, X. Ke, W. Vandervorst, Nanotechnology, 23 (2012) 305707.
[25]
F. Tuinstra, J.L. Koenig, J. Chem. Phys., 53 (1970) 1126-1130.
[26]
M. Melzer, T. Waechtler, S. Mueller, H. Fiedler, S. Hermann, R.D. Rodriguez, A. Villabona, A. Sendzik, R. Mothes, S.E. Schulz, D.R. Zahn, M. Hietschold, H. Lang, T. Gessner, Microelectron. Eng., 107 (2013) 223-228.
[27]
R. Hübner, M. Hecker, N. Mattern, V. Hoffmann, K. Wetzig, H. Engelmann, E. Zschech, Anal. Bioanal. Chem., 379 (2004) 568-575.
[28]
W.P. Leroy, C. Detavernier, R.L. Van Meirhaeghe, C. Lavoie, J. Appl. Phys., 101 (2007) 053714.
[29]
B.C. Bayer, S. Hofmann, C. Castellarin-Cudia, R. Blume, C. Baehtz, S. Esconjauregui, C.T. Wirth, R.A. Oliver, C. Ducati, A. Knop-Gericke, R. Schloegl, A. Goldoni, C. Cepek, J. Robertson, J. Phys. Chem. C, 115 (2011) 4359.
[30]
M. Nihei, D. Kondo, A. Kawabata, S. Sato, H. Shioya, M. Sakaue, T. Iwai, M. Ohfuti, Y. Awano, Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells, in: 2005 IEEE International Interconnect Technology Conference, 234-236, 2005.
[31]
H.S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Proc. IEEE, 100 (2012) 1951-1970.
[32]
A. Naeemi, J. Meindl, IEEE Electron Dev. Lett., 27 (2006) 338-340.
  1. Back-end-of-line compatible contact materials for carbon nanotube based interconnects

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Microelectronic Engineering
      Microelectronic Engineering  Volume 137, Issue C
      April 2015
      177 pages

      Publisher

      Elsevier Science Ltd.

      United Kingdom

      Publication History

      Published: 02 April 2015

      Author Tags

      1. Atomic force microscopy
      2. Carbon nanotube
      3. Contact resistance
      4. Interconnect
      5. Raman spectroscopy

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 21 Nov 2024

      Other Metrics

      Citations

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media