Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Improved kernelized correlation filter tracking by using spatial regularization

Published: 01 January 2018 Publication History

Highlights

We propose an efficient way to solve the spatial regularized regression formula.
We propose a real-time tracking algorithm base on the correlation filter.
The new algorithm achieves comparable performance and higher speed with SRDCF.

Abstract

The correlation filter based trackers have drawn much attention due to their encouraging performance on precision, robustness and speed. In this paper, we introduce the spatial regularization component into the ridge regression model used by classical kernelized correlation filter (KCF) to improve its performance. It overcomes the fact that the traditional KCF does not consider the prior spatial constraint of the feature distribution of the target. We found that, after adding the spatial regularized function, we can solve the ridge regression formula efficiently with the property of circulant matrices. In this way, we can simultaneously keep the realtime and improve the tracking performance. Finally, we evaluate the proposed SRKCF tracker on the OTB-2013 and OTB-2015 comparing with 36 trackers and our tracker achieves state-of-art. Comparing with the SRDCF which applies the spatial regularized function, our algorithm achieves comparable performance with the obvious advantages in speed.

References

[1]
A.W. Smeulders, D.M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, M. Shah, Visual tracking: an experimental survey, IEEE Trans. Pattern Anal. Mach. Intell. 36 (2013) 1441–1468.
[2]
A. Yilmaz, O. Javed, M. Shah, Object tracking: a survey, ACM Comput. Surv. 38 (2006) 81–93.
[3]
D.S. Bolme, J.R. Beveridge, B.A. Draper, Y.M. Lui, Visual object tracking using adaptive correlation filters, IEEE Conference on Computer Vision and Pattern Recognition 1113–1120 (2010).
[4]
M. Danelljan, G. Hager, F.S. Khan, M. Felsberg, Learning spatially regularized correlation filters for visual tracking, IEEE International Conference on Computer Vision 4310–4318 (2015).
[5]
J.F. Henriques, R. Caseiro, P. Martins, J. Batista, High-speed tracking with kernelized correlation filters, IEEE Trans. Pattern Anal. Mach. Intell. 37 (2015) 583–596.
[6]
Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, D. Tao, MUlti-Store Tracker (MUSTer): a cognitive psychology inspired approach to object tracking, IEEE Conference on Computer Vision and Pattern Recognition 749–758 (2015).
[7]
H. Grabner, C. Leistner, H. Bischof, Semi-supervised on-line boosting for robust tracking, European Conference on Computer Vision 234–247 (2008).
[8]
S. Hare, A. Saffari, P.H.S. Torr, Struck: structured output tracking with kernels, IEEE International Conference on Computer Vision 263–270 (2011).
[9]
Z. Kalal, K. Mikolajczyk, J. Matas, Tracking-learning-detection, IEEE Trans. Pattern Anal. Mach. Intell. 34 (2012) 1409–1422.
[10]
J. Ning, J. Yang, S. Jiang, L. Zhang, M.H. Yang, Object tracking via dual linear structured SVM and explicit feature map, IEEE Conference on Computer Vision and Pattern Recognition 4266–4274 (2016).
[11]
J.M. Zhang, S.G. Ma, S. Sclaroff, MEEM: Robust tracking via multiple experts using entropy minimization, European Conference on Computer Vision 188–203 (2014).
[12]
S. Avidan, Support vector tracking, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 1064–1072.
[13]
C.Q. Hong, J. Yu, J. You, X.H. Chen, D.P. Tao, Multi-view ensemble manifold regularization for 3D object recognition, Inf. Sci. 320 (2015) 395–405.
[14]
H. Grabner, C. Leistner, H. Bischof, Semi-supervised on-line boosting for robust tracking, European Conference on Computer Vision 34–247 (2008).
[15]
B. Babenko, M.H. Yang, S. Belongie, Robust object tracking with online multiple instance learning, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011) 1619–1632.
[16]
A. Saffari, C. Leistner, J. Santner, M. Godec, H. Bischof, On-line random forests, IEEE International Conference on Computer Vision 1393–1400 (2009).
[17]
H. Song, Y. Zheng, K. Zhang, Robust visual tracking via self-similarity learning, Electron. Lett. 53 (2017) 20–22.
[18]
C. Ma, J.B. Huang, X.K. Yang, M.H. Yang, Hierarchical convolutional features for visual tracking, IEEE International Conference on Computer Vision 3074–3082 (2015).
[19]
K. Zhang, Q. Liu, Y. Wu, M.H. Yang, Robust visual tracking via convolutional networks without training, IEEE Trans. Image Process. 25 (2016) 1779–1792.
[20]
Y. Wu, J. Lim, M.H. Yang, Object tracking benchmark, IEEE Trans. Pattern Anal. Mach. Intell. 37 (2015) 1834–1848.
[21]
H. Galoogahi, T. Sim, S. Lucey, Muti-channel correlation filters, IEEE International Conference on Computer Vision 3072–3079 (2013).
[22]
J.F. Henriques, R. Caseiro, P. Martins, J. Batista, Exploiting the circulant structure of tracking-by-detection with kernels, European Conference on Computer Vision 702–715 (2013).
[23]
Y. Li, J. Zhu, A scale adaptive kernel correlation filter tracker with feature integration, European Conference on Computer Vision 254–265 (2014).
[24]
M. Danelljan, G. Hager, F.S. Khan, M. Felsberg, J. Weijer, Accurate scale estimation for robust visual tracking, in: British Machine Vision Conference, 2014.
[25]
C.Q. Hong, J.K. Zhu, J. Yu, J. Chen, X.H. Chen, Realtime and robust object matching with a large number of templates, Multimedia Tools Appl. 75 (2016) 1459–1480.
[26]
W. Chen, K. Zhang, Q. Liu, Robust visual tracking via patch based kernel correlation filters with adaptive multiple feature ensemble, Neurocomputing 214 (2016) 607–617.
[27]
B. Zhang, Z. Li, X. Cao, Q. Ye, C. Chen, L. Shen, A. Perina, R. Ji, Output constraint transfer for kernelized correlation filter in tracking, IEEE Trans. Syst. Man Cybernet.: Syst. 47 (2017) 693–703.
[28]
Y. Li, J. Zhu, S.C.H. Hoi, Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches, IEEE Conference on Computer Vision and Pattern Recognition 353–361 (2015).
[29]
Y. Wu, J. Lim, M.H. Yang, Online object tracking: a benchmark, IEEE Conference on Computer Vision and Pattern Recognition 2411–2418 (2013).
[30]
P.F. Felzenszwalb, R.B. Girshick, D. McAllester, D. Ramanan, Object detection with discriminatively trained part-based models, IEEE Trans. Pattern Anal. Mach. Intell. 32 (2010) 1627–1645.
[31]
J.V.D. Weijer, C. Schmid, J. Verbeek, D. Larlus, Learning color names for real-world applications, IEEE Trans. Image Process. 18 (2009) 1512–1523.
[32]
D. Chen, Z. Yuan, Y. Wu, G. Zhang, N. Zheng, Constructing adaptive complex cells for robust visual tracking, IEEE International Conference on Computer Vision 1113–1120 (2013).
[33]
J. Gao, H. Ling, W. Hu, J. Xing, Transfer learning based visual tracking with gaussian processes regression, European Conference on Computer Vision 188–203 (2014).
[34]
M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin, G. Fernandez, T. Vojir, G. Hager, The visual object tracking VOT2015 challenge results, IEEE International Conference on Computer Vision 564–586 (2015).

Cited By

View all
  • (2024)Local-Global Self-Attention for Transformer-Based Object TrackingIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2024.343494934:12_Part_1(12316-12329)Online publication date: 1-Dec-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation  Volume 50, Issue C
Jan 2018
333 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 January 2018

Author Tags

  1. Visual tracking
  2. Correlation filter
  3. Spatial regularization
  4. Kernel method

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Local-Global Self-Attention for Transformer-Based Object TrackingIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2024.343494934:12_Part_1(12316-12329)Online publication date: 1-Dec-2024

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media