Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

The maximum likelihood data singular locus

Published: 01 March 2017 Publication History

Abstract

For general data, the number of complex solutions to the likelihood equations is constant and this number is called the (maximum likelihood) ML-degree of the model. In this article, we describe the special locus of data for which the likelihood equations have a solution in the model's singular locus.

References

[1]
C. Bocci, E. Carlini, J. Kileel, Hadamard products of linear spaces. arXiv:1504.04301
[2]
N. Budur, B. Wang, The signed Euler characteristic of very affine varieties, Int. Math. Res. Not., 14 (2015) 5710-5714.
[3]
F. Catanese, S. Hoşten, A. Khetan, B. Sturmfels, The maximum likelihood degree, Am. J. Math., 128 (2006) 671-697.
[4]
M.A. Cueto, J. Morton, B. Sturmfels, Geometry of the restricted Boltzmann machine, in: Contemp. Math., vol. 516, Amer. Math. Soc., Providence, RI, 2010, pp. 135-153.
[5]
M.A. Cueto, E.A. Tobis, J. Yu, An implicitization challenge for binary factor analysis, J. Symb. Comput., 45 (2010) 1296-1315.
[6]
J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels, R.R. Thomas, The Euclidean distance degree of an algebraic variety, Found. Comput. Math. (2014).
[7]
D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
[8]
E. Gross, J.I. Rodriguez, Maximum likelihood geometry in the presence of data zeros, in: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ACM, 2014, pp. 232-239.
[9]
J. Hauenstein, J.I. Rodriguez, B. Sturmfels, Maximum likelihood for matrices with rank constraints, J. Algebraic Stat., 5 (2014) 18-38.
[10]
E. Horobe¿, The data singular and the data isotropic loci for affine cones. arXiv:1507.02923
[11]
S. Hoşten, A. Khetan, B. Sturmfels, Solving the likelihood equations, Found. Comput. Math., 5 (2005) 389-407.
[12]
J. Huh, The maximum likelihood degree of a very affine variety, Compos. Math., 149 (2013) 1245-1266.
[13]
J. Huh, Varieties with maximum likelihood degree one, J. Algebraic Stat., 5 (2014) 1-17.
[14]
J. Huh, B. Sturmfels, Likelihood geometry, in: Lecture Notes in Math., vol. 2108, Springer, Cham, 2014, pp. 63-117.
[15]
J.I. Rodriguez, Maximum likelihood for dual varieties, in: Proceedings of the 2014 Symposium on Symbolic-Numeric Computation, ACM, 2014, pp. 43-49.
[16]
J.I. Rodriguez, X. Tang, Data-discriminants of likelihood equations, in: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ACM, 2015, pp. 307-314.
[17]
J.I. Rodriguez, B. Wang, The maximum likelihood degree of rank 2 matrices via Euler characteristics. arXiv:1505.06536
[18]
P. Rostalski, B. Sturmfels, Dualities, in: MOS-SIAM Ser. Optim., vol. 13, SIAM, Philadelphia, PA, 2013, pp. 203-249.
[19]
B. Wang, Maximum likelihood degree of Fermat hypersurfaces via Euler characteristics. arXiv:1509.03762
  1. The maximum likelihood data singular locus

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Symbolic Computation
    Journal of Symbolic Computation  Volume 79, Issue P1
    March 2017
    196 pages

    Publisher

    Academic Press, Inc.

    United States

    Publication History

    Published: 01 March 2017

    Author Tags

    1. Data singular locus
    2. ML discriminant
    3. Maximum likelihood degree

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 16 Feb 2025

    Other Metrics

    Citations

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media