Nothing Special   »   [go: up one dir, main page]

skip to main content
review-article

Sentiment analysis methods, applications, and challenges: : A systematic literature review

Published: 18 July 2024 Publication History

Abstract

With the expansion of Internet-based applications, the number of comments shows explosive growth. Analyzing the attitudes and emotions behind comments provides powerful assistance for businesses, governments, and scholars. However, it is hard to effectively extract user’s attitude from the massive amounts of comments. Sentiment analysis (SA) provides an automatic, fast and efficient tool to identify reviewers’ opinions and sentiments. However, the existing literature reviews cover a limited number of studies or have a narrow field of studies for sentiment analysis. This paper provided a systematic literature review of sentiment analysis methods, applications, and challenges. This systematic literature review gives insights into the goal of the sentiment analysis task, offers comparisons of different techniques, investigates the application domains of sentiment analysis, highlights the challenges and limitations encountered by scholars, provides suggestions on possible solutions and explores the future research directions. The study’s findings emphasize the significant role of artificial intelligence technologies in automatic text sentiment analysis and highlight the importance of sentiment analysis in people’s production and life. This research not only contributes to the existing sentiment analysis knowledge body but also provides references to scholars and practitioners in choosing a suitable methodology and good practices to perform sentiment analysis.

References

[1]
M.M. Abdelgwad, T.H.A. Soliman, A.I. Taloba, M.F. Farghaly, Arabic aspect based sentiment analysis using bidirectional GRU based models, Journal of King Saud University-Computer and Information Sciences 34 (2022) 6652–6662.
[2]
B. Agarwal, N. Mittal, B. Agarwal, N. Mittal, Machine learning approach for sentiment analysis, Prominent Feature Extraction for Sentiment Analysis (2016) 21–45.
[3]
M. Ahmad, S. Aftab, I. Ali, Sentiment analysis of tweets using svm, Int. J. Comput. Appl 177 (2017) 25–29.
[4]
F. Alshuwaier, A. Areshey, J. Poon, Applications and enhancement of document-based sentiment analysis in deep learning methods: Systematic literature review, Intelligent Systems with Applications 15 (2022).
[5]
A. Altaf, M.W. Anwar, M.H. Jamal, U.I. Bajwa, Exploiting Linguistic Features for Effective Sentence-Level Sentiment Analysis in Urdu Language, Multimed. Tools Appl. (2023) 1–27.
[6]
S. Alyami, A. Alhothali, A. Jamal, Systematic literature review of Arabic aspect-based sentiment analysis, Journal of King Saud University-Computer and Information Sciences 34 (2022) 6524–6551.
[7]
O. Appel, F. Chiclana, J. Carter, H. Fujita, A hybrid approach to the sentiment analysis problem at the sentence level, Knowl.-Based Syst. 108 (2016) 110–124.
[8]
M.Z. Asghar, A. Khan, S. Ahmad, F.M. Kundi, A review of feature extraction in sentiment analysis, Journal of Basic and Applied Scientific Research 4 (2014) 181–186.
[9]
Asghar, N., 2016. Yelp dataset challenge: Review rating prediction. arXiv preprint arXiv:1605.05362.
[10]
Baker, M.R., Mohammed, E.Z., Jihad, K.H., 2022. Prediction of Colon Cancer Related Tweets Using Deep Learning Models, International Conference on Intelligent Systems Design and Applications. Springer, pp. 522-532.
[11]
M.R. Baker, Y.N. Taher, K.H. Jihad, PREDICTION OF PEOPLE SENTIMENTS ON TWITTER USING MACHINE LEARNING CLASSIFIERS DURING RUSSIAN AGGRESSION IN UKRAINE, Jordanian Journal of Computers & Information Technology 9 (2023).
[12]
S. Behdenna, F. Barigou, G. Belalem, Sentiment analysis at document level, Smart Trends in Information Technology and Computer Communications: First International Conference, SmartCom 2016, Jaipur, India, August 6–7, 2016, Revised Selected Papers 1, Springer (2016) 159–168.
[13]
S. Behdenna, F. Barigou, G. Belalem, Document level sentiment analysis: a survey, EAI Endorsed Transactions on Context-Aware Systems and Applications 4 (2018) e2–e.
[14]
O.M. Beigi, M.H. Moattar, Automatic construction of domain-specific sentiment lexicon for unsupervised domain adaptation and sentiment classification, Knowl.-Based Syst. 213 (2021).
[15]
Beltagy, I., Peters, M.E., Cohan, A., 2020. Longformer: The long-document transformer. arXiv preprint arXiv:2004.05150.
[16]
M. Birjali, M. Kasri, A. Beni-Hssane, A comprehensive survey on sentiment analysis: Approaches, challenges and trends, Knowl.-Based Syst. 226 (2021).
[17]
E. Boiy, M.-F. Moens, A machine learning approach to sentiment analysis in multilingual Web texts, Inf. Retr. 12 (2009) 526–558.
[18]
Bose, R., Dey, R.K., Roy, S., Sarddar, D., 2020. Sentiment analysis on online product reviews, Information and Communication Technology for Sustainable Development: Proceedings of ICT4SD 2018. Springer, pp. 559-569.
[19]
A.J. Bowers, X. Zhou, Receiver operating characteristic (ROC) area under the curve (AUC): A diagnostic measure for evaluating the accuracy of predictors of education outcomes, Journal of Education for Students Placed at Risk (JESPAR) 24 (2019) 20–46.
[20]
K. Bu, Y. Liu, X. Ju, Efficient Utilization of Pre-trained Models: A Review of Sentiment Analysis via Prompt Learning, Knowl.-Based Syst. 111148 (2023).
[21]
H. Cai, R. Xia, J. Yu, Aspect-category-opinion-sentiment quadruple extraction with implicit aspects and opinions, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (volume 1: Long Papers), 2021, pp. 340–350.
[22]
Y. Celik, M. Talo, O. Yildirim, M. Karabatak, U.R. Acharya, Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images, Pattern Recogn. Lett. 133 (2020) 232–239.
[23]
T. Chai, R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE), Geosci. Model Dev. Discuss. 7 (2014) 1525–1534.
[24]
T. Chai, R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature, Geosci. Model Dev. 7 (2014) 1247–1250.
[25]
J.-Y.-L. Chan, K.T. Bea, S.M.H. Leow, S.W. Phoong, W.K. Cheng, State of the art: a review of sentiment analysis based on sequential transfer learning, Artif. Intell. Rev. 56 (2023) 749–780.
[26]
J.-R. Chang, H.-Y. Liang, L.-S. Chen, C.-W. Chang, Novel feature selection approaches for improving the performance of sentiment classification, J. Ambient Intell. Hum. Comput. (2020) 1–14.
[27]
I. Chaturvedi, E. Cambria, R.E. Welsch, F. Herrera, Distinguishing between facts and opinions for sentiment analysis: Survey and challenges, Information Fusion 44 (2018) 65–77.
[28]
G.S. Chauhan, R. Nahta, Y.K. Meena, D. Gopalani, Aspect based sentiment analysis using deep learning approaches: A survey, Computer Science Review 49 (2023).
[29]
Y. Chen, Convolutional neural network for sentence classification, University of Waterloo, 2015.
[30]
F. Chen, Y. Huang, Knowledge-enhanced neural networks for sentiment analysis of Chinese reviews, Neurocomputing 368 (2019) 51–58.
[31]
S. Chen, J. Liu, Y. Wang, W. Zhang, Z. Chi, Synchronous double-channel recurrent network for aspect-opinion pair extraction, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 6515–6524.
[32]
C. Chen, Z. Teng, Z. Wang, Y. Zhang, Discrete opinion tree induction for aspect-based sentiment analysis, in: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (volume 1: Long Papers), 2022, pp. 2051–2064.
[33]
T. Chen, R. Xu, Y. He, X. Wang, Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN, Expert Syst. Appl. 72 (2017) 221–230.
[34]
F. Chen, Z. Yang, Y. Huang, A multi-task learning framework for end-to-end aspect sentiment triplet extraction, Neurocomputing 479 (2022) 12–21.
[35]
N. Chintalapudi, G. Battineni, M. Di Canio, G.G. Sagaro, F. Amenta, Text mining with sentiment analysis on seafarers’ medical documents, International Journal of Information Management Data Insights 1 (2021).
[36]
Clark, K., Luong, M.-T., Le, Q.V., Manning, C.D., 2020. Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.
[37]
C. Cortes, V. Vapnik, Support-Vector Networks. Machine Learning 20 (1995) 273–297.
[38]
N.O.F. Daeli, A. Adiwijaya, Sentiment analysis on movie reviews using Information gain and K-nearest neighbor, Journal of Data Science and Its Applications 3 (2020) 1–7.
[39]
Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R., 2019. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.
[40]
R. Das, T.D. Singh, Multimodal sentiment analysis: A survey of methods, trends and challenges, ACM Comput. Surv. (2023).
[41]
K. Denecke, Y. Deng, Sentiment analysis in medical settings: New opportunities and challenges, Artif. Intell. Med. 64 (2015) 17–27.
[42]
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[43]
H.H. Do, P.W. Prasad, A. Maag, A. Alsadoon, Deep learning for aspect-based sentiment analysis: a comparative review, Expert Syst. Appl. 118 (2019) 272–299.
[44]
I. El Alaoui, Y. Gahi, R. Messoussi, Y. Chaabi, A. Todoskoff, A. Kobi, A novel adaptable approach for sentiment analysis on big social data, Journal of Big Data 5 (2018) 1–18.
[45]
F. Eskandari, H. Shayestehmanesh, S. Hashemi, Predicting best answer using sentiment analysis in community question answering systems, 2015 Signal Processing and Intelligent Systems Conference (SPIS), IEEE (2015) 53–57.
[46]
F. Falck, J. Marstaller, N. Stoehr, S. Maucher, J. Ren, A. Thalhammer, A. Rettinger, R. Studer, Measuring proximity between newspapers and political parties: the sentiment political compass, Policy Internet 12 (2020) 367–399.
[47]
A. Gandhi, K. Adhvaryu, S. Poria, E. Cambria, A. Hussain, Multimodal sentiment analysis: A systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions, Information Fusion 91 (2023) 424–444.
[48]
Ganesan, K., 2010. Opinrank review dataset.
[49]
L. Gao, Y. Wang, T. Liu, J. Wang, L. Zhang, J. Liao, Question-driven span labeling model for aspect–opinion pair extraction, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2021, pp. 12875–12883.
[50]
E. Georgiadou, S. Angelopoulos, H. Drake, Big data analytics and international negotiations: Sentiment analysis of Brexit negotiating outcomes, Int. J. Inf. Manag. 51 (2020).
[51]
S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997) 1735–1780.
[52]
Hu, M., Peng, Y., Huang, Z., Li, D., Lv, Y., 2019. Open-domain targeted sentiment analysis via span-based extraction and classification. arXiv preprint arXiv:1906.03820.
[53]
H. Huang, A. Asemi, M.B. Mustafa, Sentiment analysis in e-commerce platforms: A review of current techniques and future directions, IEEE Access, 2023.
[54]
B. Huang, R. Guo, Y. Zhu, Z. Fang, G. Zeng, J. Liu, Y. Wang, H. Fujita, Z. Shi, Aspect-level sentiment analysis with aspect-specific context position information, Knowl.-Based Syst. 243 (2022).
[55]
W. Huang, M. Lin, Y. Wang, Sentiment analysis of Chinese e-commerce product reviews using ERNIE word embedding and attention mechanism, Appl. Sci. 12 (2022) 7182.
[56]
P.K. Jain, R. Pamula, G. Srivastava, A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews, Computer Science Review 41 (2021).
[57]
Q. Jiang, L. Chen, R. Xu, X. Ao, M. Yang, A challenge dataset and effective models for aspect-based sentiment analysis, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 6280–6285.
[58]
Jihad, K.H., Baker, M.R., Farhat, M., Frikha, M., 2022. Machine Learning-Based Social Media Text Analysis: Impact of the Rising Fuel Prices on Electric Vehicles, International Conference on Hybrid Intelligent Systems. Springer, pp. 625-635.
[59]
M. Joshi, D. Chen, Y. Liu, D.S. Weld, L. Zettlemoyer, O. Levy, Spanbert: Improving pre-training by representing and predicting spans, Transactions of the Association for Computational Linguistics 8 (2020) 64–77.
[60]
H. Kang, S.J. Yoo, D. Han, Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant reviews, Expert Syst. Appl. 39 (2012) 6000–6010.
[61]
C. Ke, Q. Xiong, C. Wu, Z. Liao, H. Yi, Prior-bert and multi-task learning for target-aspect-sentiment joint detection, in: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022, pp. 7817–7821.
[62]
C. Ke, Q. Xiong, C. Wu, H. Yi, M. Gao, J. Chen, SimCPD: a simple framework for contrastive prompts of target-aspect-sentiment joint detection, Neural Comput. & Applic. (2023) 1–16.
[63]
Keung, P., Lu, Y., Szarvas, G., Smith, N.A., 2020. The multilingual amazon reviews corpus. arXiv preprint arXiv:2010.02573.
[64]
Khoshnevisan, B., Rafiee, S., Iqbal, J., Shamshirband, S., Omid, M., BADRUL, A.N., ABDUL, W.A., 2015. A comparative study between artificial neural networks and adaptive neuro-fuzzy inference systems for modeling energy consumption in greenhouse tomato production: A case study in isfahan province.
[65]
C. Kingsford, S.L. Salzberg, What are decision trees?, Nat. Biotechnol. 26 (2008) 1011–1013.
[66]
D. Kirange, R.R. Deshmukh, M. Kirange, Aspect based sentiment analysis semeval-2014 task 4, Asian Journal of Computer Science and Information Technology (AJCSIT) 4 (2014).
[67]
D.G. Kleinbaum, K. Dietz, M. Gail, M. Klein, M. Klein, Logistic regression, Springer, 2002.
[68]
E.A. Krupinski, Receiver Operating Characteristic (ROC) Analysis, Frontline Learn. Res. 5 (2017) 41–52.
[69]
F.M. Kundi, S. Ahmad, A. Khan, M.Z. Asghar, Detection and scoring of internet slangs for sentiment analysis using SentiWordNet, Life Science Journal 11 (2014) 66–72.
[70]
Li, Y., Yin, C., Zhong, S.-h., Pan, X., 2020. Multi-instance multi-label learning networks for aspect-category sentiment analysis. arXiv preprint arXiv:2010.02656.
[71]
Li, S., Xue, F., Baranwal, C., Li, Y., You, Y., 2021a. Sequence parallelism: Long sequence training from system perspective. arXiv preprint arXiv:2105.13120.
[72]
J. Li, X. Li, Y. Du, Y. Fan, X. Chen, D. Huang, An Aspect-Category-Opinion-Sentiment Quadruple Extraction with Distance Information for Implicit Sentiment Analysis, Information Technology and Control 52 (2023) 445–456.
[73]
Liang, Y., Meng, F., Zhang, J., Chen, Y., Xu, J., Zhou, J., 2020. An iterative multi-knowledge transfer network for aspect-based sentiment analysis. arXiv preprint arXiv:2004.01935.
[74]
Y. Liang, F. Meng, J. Zhang, Y. Chen, J. Xu, J. Zhou, A dependency syntactic knowledge augmented interactive architecture for end-to-end aspect-based sentiment analysis, Neurocomputing 454 (2021) 291–302.
[75]
B. Liu, Sentiment analysis and opinion mining, Synthesis Lectures on Human Language Technologies 5 (2012) 1–167.
[76]
Liu, P., Qiu, X., Huang, X., 2016. Recurrent neural network for text classification with multi-task learning. arXiv preprint arXiv:1605.05101.
[77]
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V., 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
[78]
B. Liu, T. Lin, M. Li, Enhancing aspect-category sentiment analysis via syntactic data augmentation and knowledge enhancement, Knowl.-Based Syst. 264 (2023).
[79]
B. Liu, L. Zhang, A survey of opinion mining and sentiment analysis, Mining Text Data. Springer (2012) 415–463.
[80]
W. Liu, P. Zhou, Z. Zhao, Z. Wang, Q. Ju, H. Deng, P. Wang, K-bert: Enabling language representation with knowledge graph, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 2901–2908.
[81]
S.L. Lo, E. Cambria, R. Chiong, D. Cornforth, Multilingual sentiment analysis: from formal to informal and scarce resource languages, Artif. Intell. Rev. 48 (2017) 499–527.
[82]
A. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng, C. Potts, Learning word vectors for sentiment analysis, in: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 2011, pp. 142–150.
[83]
Z. Madhoushi, A.R. Hamdan, S. Zainudin, Sentiment analysis techniques in recent works, 2015 science and information conference (SAI), IEEE (2015) 288–291.
[84]
Y. Mao, Y. Zhang, L. Jiao, H. Zhang, Document-level sentiment analysis using attention-based bi-directional long short-term memory network and two-dimensional convolutional neural network, Electronics 11 (2022) 1906.
[85]
M. Marong, N.K. Batcha, R. Mafas, Sentiment Analysis in E-Commerce: A Review on The Techniques and Algorithms, Journal of Applied Technology and Innovation (e-ISSN 2600–7304) 4 (2020) 6.
[86]
Matrane, Y., Benabbou, F., Sael, N., 2023. A systematic literature review of Arabic dialect sentiment analysis. Journal of King Saud University-Computer and Information Sciences, 101570.
[87]
R. Maulana, P.A. Rahayuningsih, W. Irmayani, D. Saputra, W.E. Jayanti, Improved accuracy of sentiment analysis movie review using support vector machine based information gain, Journal of Physics: Conference Series. IOP Publishing (2020).
[88]
E.M. Mercha, H. Benbrahim, Machine learning and deep learning for sentiment analysis across languages: A survey, Neurocomputing 531 (2023) 195–216.
[89]
A. Mitra, Sentiment analysis using machine learning approaches (Lexicon based on movie review dataset), Journal of Ubiquitous Computing and Communication Technologies (UCCT) 2 (2020) 145–152.
[90]
S. Moghaddam, M. Ester, Opinion digger: an unsupervised opinion miner from unstructured product reviews, in: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, 2010, pp. 1825–1828.
[91]
R. Moraes, J.F. Valiati, W.P.G. Neto, Document-level sentiment classification: An empirical comparison between SVM and ANN, Expert Syst. Appl. 40 (2013) 621–633.
[92]
M.S. Mubarok, A. Adiwijaya, M.d., Aspect-based sentiment analysis to review products using Naïve Bayes, AIP Publishing LLC, AIP conference proceedings, 2017, p. 020060.
[93]
A.J. Myles, R.N. Feudale, Y. Liu, N.A. Woody, S.D. Brown, An introduction to decision tree modeling, Journal of Chemometrics: A Journal of the Chemometrics Society 18 (2004) 275–285.
[94]
Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., Stoyanov, V., 2019. SemEval-2016 task 4: Sentiment analysis in Twitter. arXiv preprint arXiv:1912.01973.
[95]
Nawrot, P., Tworkowski, S., Tyrolski, M., Kaiser, Ł., Wu, Y., Szegedy, C., Michalewski, H., 2021. Hierarchical transformers are more efficient language models. arXiv preprint arXiv:2110.13711.
[96]
Nawrot, P., Chorowski, J., Łańcucki, A., Ponti, E.M., 2022. Efficient transformers with dynamic token pooling. arXiv preprint arXiv:2211.09761.
[97]
K. Nigam, J. Lafferty, A. McCallum, Using maximum entropy for text classification, IJCAI-99 workshop on machine learning for information filtering, Stockholom, Sweden, 1999, pp. 61–67.
[98]
S. Osorio Angel, P.P.A. Negrón, A. Espinoza-Valdez, Systematic literature review of sentiment analysis in the Spanish language, Data Technologies and Applications 55 (2021) 461–479.
[99]
O. Oueslati, E. Cambria, M.B. HajHmida, H. Ounelli, A review of sentiment analysis research in Arabic language, Futur. Gener. Comput. Syst. 112 (2020) 408–430.
[100]
N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, D. Tran, Image transformer, International Conference on Machine Learning. PMLR (2018) 4055–4064.
[101]
H. Peng, E. Cambria, A. Hussain, A review of sentiment analysis research in Chinese language, Cogn. Comput. 9 (2017) 423–435.
[102]
H. Peng, L. Xu, L. Bing, F. Huang, W. Lu, L. Si, Knowing what, how and why: A near complete solution for aspect-based sentiment analysis, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 8600–8607.
[103]
Peper, J.J., Wang, L., 2022. Generative aspect-based sentiment analysis with contrastive learning and expressive structure. arXiv preprint arXiv:2211.07743.
[104]
D.A. Pereira, A survey of sentiment analysis in the Portuguese language, Artif. Intell. Rev. 54 (2021) 1087–1115.
[105]
Pérez-Rosas, V., Mihalcea, R., Morency, L.-P., 2013. Utterance-level multimodal sentiment analysis, Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 973-982.
[106]
H.T. Phan, N.T. Nguyen, D. Hwang, Aspect-level sentiment analysis: A survey of graph convolutional network methods, Information Fusion 91 (2023) 149–172.
[107]
Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I., 2015. Semeval-2015 task 12: Aspect based sentiment analysis, Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pp. 486-495.
[108]
Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., AL-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq, O., 2016. Semeval-2016 task 5: Aspect based sentiment analysis, ProWorkshop on Semantic Evaluation (SemEval-2016). Association for Computational Linguistics, pp. 19-30.
[109]
S. Poria, E. Cambria, A. Gelbukh, Aspect extraction for opinion mining with a deep convolutional neural network, Knowl.-Based Syst. 108 (2016) 42–49.
[110]
Ramírez-Tinoco, F.J., Alor-Hernández, G., Sánchez-Cervantes, J.L., Salas-Zárate, M.d.P., Valencia-García, R., 2019. Use of sentiment analysis techniques in healthcare domain. Current Trends in Semantic Web Technologies: Theory and Practice, 189-212.
[111]
Remus, R., Quasthoff, U., Heyer, G., 2010. SentiWS-A Publicly Available German-language Resource for Sentiment Analysis, LREC.
[112]
Rodríguez-Ibánez, M., Casánez-Ventura, A., Castejón-Mateos, F., Cuenca-Jiménez, P.-M., 2023. A review on sentiment analysis from social media platforms. Expert Systems with Applications, 119862.
[113]
L. Rognone, S. Hyde, S.S. Zhang, News sentiment in the cryptocurrency market: An empirical comparison with Forex, Int. Rev. Financ. Anal. 69 (2020).
[114]
Rosenthal, S., Farra, N., Nakov, P., 2019. SemEval-2017 task 4: Sentiment analysis in Twitter. arXiv preprint arXiv:1912.00741.
[115]
F. Rustam, I. Ashraf, A. Mehmood, S. Ullah, G.S. Choi, Tweets classification on the base of sentiments for US airline companies, Entropy 21 (2019) 1078.
[116]
Saadany, H., Orasan, C., 2020. Is it great or terrible? preserving sentiment in neural machine translation of arabic reviews. arXiv preprint arXiv:2010.13814.
[117]
H. Sankar, V. Subramaniyaswamy, Investigating sentiment analysis using machine learning approach, 2017 International conference on intelligent sustainable systems (ICISS), IEEE (2017) 87–92.
[118]
R. Sarkis-Onofre, F. Catalá-López, E. Aromataris, C. Lockwood, How to properly use the PRISMA Statement, Syst. Rev. 10 (2021) 1–3.
[119]
T. Shaik, X. Tao, C. Dann, H. Xie, Y. Li, L. Galligan, Sentiment analysis and opinion mining on educational data: A survey, Natural Language Processing Journal 2 (2023).
[120]
K. Shaukat, I.A. Hameed, S. Luo, I. Javed, F. Iqbal, A. Faisal, R. Masood, A. Usman, U. Shaukat, R. Hassan, Domain specific lexicon generation through sentiment analysis, International Journal of Emerging Technologies in Learning (iJET) 15 (2020) 190–204.
[121]
Y. Shen, L. Heacock, J. Elias, K.D. Hentel, B. Reig, G. Shih, L. Moy, ChatGPT and other large language models are double-edged swords. Radiological Society of North, America (2023) e230163.
[122]
S. Smetanin, The applications of sentiment analysis for Russian language texts: Current challenges and future perspectives, IEEE Access 8 (2020) 110693–110719.
[123]
R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A.Y. Ng, C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank, in: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013, pp. 1631–1642.
[124]
J. Su, Q. Chen, Y. Wang, L. Zhang, W. Pan, Z. Li, Sentence-level sentiment analysis based on supervised gradual machine learning, Sci. Rep. 13 (2023) 14500.
[125]
F. Sudirjo, K. Diantoro, J.A. Al-Gasawneh, H.K. Azzaakiyyah, A.M.A. Ausat, Application of ChatGPT in Improving Customer Sentiment Analysis for Businesses, Jurnal Teknologi Dan Sistem Informasi Bisnis 5 (2023) 283–288.
[126]
T. Susnjak, Applying bert and chatgpt for sentiment analysis of lyme disease in scientific literature, Methods and Protocols. Springer, Borrelia burgdorferi, 2024, pp. 173–183.
[127]
M. Taboada, J. Brooke, M. Tofiloski, K. Voll, M. Stede, Lexicon-based methods for sentiment analysis, Comput. Linguist. 37 (2011) 267–307.
[128]
Tai, K.S., Socher, R., Manning, C.D., 2015. Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075.
[129]
X. Tan, Y. Cai, J. Xu, H.-F. Leung, W. Chen, Q. Li, Improving aspect-based sentiment analysis via aligning aspect embedding, Neurocomputing 383 (2020) 336–347.
[130]
Thakkar, H., Patel, D., 2015. Approaches for sentiment analysis on twitter: A state-of-art study. arXiv preprint arXiv:1512.01043.
[131]
H.H. Thorp, ChatGPT is fun, but not an author, American Association for the Advancement of Science (2023) 313.
[132]
Y. Tian, L. Yang, Y. Sun, D. Liu, Cross-domain end-to-end aspect-based sentiment analysis with domain-dependent embeddings, Complexity 2021 (2021) 1–11.
[133]
T. Tran, H. Ba, V.-N. Huynh, Measuring hotel review sentiment: An aspect-based sentiment analysis approach, Integrated Uncertainty in Knowledge Modelling and Decision Making: 7th International Symposium, IUKM 2019, Nara, Japan, March 27–29, 2019, Proceedings 7, Springer (2019) 393–405.
[134]
S. Verma, M. Saini, A. Sharan, Deep sequential model for review rating prediction, in: 2017 Tenth International Conference on Contemporary Computing (IC3). IEEE, 2017, pp. 1–6.
[135]
Wang, C., Peng, T., Zhang, Y., Yue, L., Liu, L., 2022. AOPSS: A Joint Learning Framework for Aspect-Opinion Pair Extraction as Semantic Segmentation, Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data. Springer, pp. 101-113.
[136]
Wang, Z., Xie, Q., Ding, Z., Feng, Y., Xia, R., 2023. Is ChatGPT a good sentiment analyzer? A preliminary study. arXiv preprint arXiv:2304.04339.
[137]
H. Wang, L. Zheng, Sentiment classification of Chinese online reviews: a comparison of factors influencing performances, Enterprise Information Systems 10 (2016) 228–244.
[138]
J. Wen, G. Zhang, H. Zhang, W. Yin, J. Ma, Speculative text mining for document-level sentiment classification, Neurocomputing 412 (2020) 52–62.
[139]
C.J. Willmott, K. Matsuura, Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Climate Res. 30 (2005) 79–82.
[140]
T. Wilson, J. Wiebe, P. Hoffmann, Recognizing contextual polarity in phrase-level sentiment analysis, Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (2005) 347–354.
[141]
N. Wu, The maximum entropy method, Springer Science & Business Media, 2012.
[142]
Wu, Y., Rabe, M.N., Hutchins, D., Szegedy, C., 2022. Memorizing transformers. arXiv preprint arXiv:2203.08913.
[143]
L. Wu, F. Morstatter, H. Liu, SlangSD: building, expanding and using a sentiment dictionary of slang words for short-text sentiment classification, Lang. Resour. Eval. 52 (2018) 839–852.
[144]
C. Wu, Q. Xiong, H. Yi, Y. Yu, Q. Zhu, M. Gao, J. Chen, Multiple-element joint detection for aspect-based sentiment analysis, Knowl.-Based Syst. 223 (2021).
[145]
F.Z. Xing, E. Cambria, R.E. Welsch, Natural language based financial forecasting: a survey, Artif. Intell. Rev. 50 (2018) 49–73.
[146]
Q.A. Xu, V. Chang, C. Jayne, A systematic review of social media-based sentiment analysis: Emerging trends and challenges, Decision Analytics Journal 3 (2022).
[147]
Xu, J., Chen, D., Qiu, X., Huang, X., 2016. Cached long short-term memory neural networks for document-level sentiment classification. arXiv preprint arXiv:1610.04989.
[148]
M. Xu, D. Wang, S. Feng, Z. Yang, Y. Zhang, Kc-isa: An implicit sentiment analysis model combining knowledge enhancement and context features, in: Proceedings of the 29th International Conference on Computational Linguistics, 2022, pp. 6906–6915.
[149]
Q. Xu, L. Zhu, T. Dai, C. Yan, Aspect-based sentiment classification with multi-attention network, Neurocomputing 388 (2020) 135–143.
[150]
A. Yadav, D.K. Vishwakarma, Sentiment analysis using deep learning architectures: a review, Artif. Intell. Rev. 53 (2020) 4335–4385.
[151]
Yan, H., Dai, J., Qiu, X., Zhang, Z., 2021. A unified generative framework for aspect-based sentiment analysis. arXiv preprint arXiv:2106.04300.
[152]
Yin, D., Meng, T., Chang, K.-W., 2020. Sentibert: A transferable transformer-based architecture for compositional sentiment semantics. arXiv preprint arXiv:2005.04114.
[153]
Q. You, J. Luo, H. Jin, J. Yang, Robust image sentiment analysis using progressively trained and domain transferred deep networks, Proceedings of the AAAI Conference on Artificial Intelligence, 2015.
[154]
Q. You, J. Luo, H. Jin, J. Yang, Cross-modality consistent regression for joint visual-textual sentiment analysis of social multimedia, in: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, 2016, pp. 13–22.
[155]
A. Yousif, Z. Niu, J.K. Tarus, A. Ahmad, A survey on sentiment analysis of scientific citations, Artif. Intell. Rev. 52 (2019) 1805–1838.
[156]
Zadeh, A., Zellers, R., Pincus, E., Morency, L.-P., 2016. Mosi: multimodal corpus of sentiment intensity and subjectivity analysis in online opinion videos. arXiv preprint arXiv:1606.06259.
[157]
Zaremba, W., Sutskever, I., Vinyals, O., 2014. Recurrent neural network regularization. arXiv preprint arXiv:1409.2329.
[158]
S.M. Zavattaro, P.E. French, S.D. Mohanty, A sentiment analysis of US local government tweets: The connection between tone and citizen involvement, Gov. Inf. Q. 32 (2015) 333–341.
[159]
W. Zhang, X. Li, Y. Deng, L. Bing, W. Lam, Towards generative aspect-based sentiment analysis, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (volume 2: Short Papers), 2021, pp. 504–510.
[160]
W. Zhang, X. Li, Y. Deng, L. Bing, W. Lam, A survey on aspect-based sentiment analysis: Tasks, methods, and challenges, IEEE Trans. Knowl. Data Eng. (2022).
[161]
Y. Zhang, T. Peng, R. Han, J. Han, L. Yue, L. Liu, Synchronously tracking entities and relations in a syntax-aware parallel architecture for aspect-opinion pair extraction, Appl. Intell. 52 (2022) 15210–15225.
[162]
Zhao, Q., Ma, S., Ren, S., 2022. KESA: a knowledge enhanced approach for sentiment analysis. arXiv preprint arXiv:2202.12093.
[163]
A. Zhao, Y. Yu, Knowledge-enabled BERT for aspect-based sentiment analysis, Knowl.-Based Syst. 227 (2021).
[164]
Zhou, Y., Srikumar, V., 2021. A closer look at how fine-tuning changes BERT. arXiv preprint arXiv:2106.14282.
[165]
C. Zhu, B. Yi, L. Luo, Base on contextual phrases with cross-correlation attention for aspect-level sentiment analysis, Expert Syst. Appl. 241 (2024).
[166]
A. Zunic, P. Corcoran, I. Spasic, Sentiment analysis in health and well-being: systematic review, JMIR Med. Inform. 8 (2020) e16023.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of King Saud University - Computer and Information Sciences
Journal of King Saud University - Computer and Information Sciences  Volume 36, Issue 4
Apr 2024
357 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 18 July 2024

Author Tags

  1. Sentiment analysis
  2. Methods
  3. Applications
  4. Large language models
  5. Challenges

Qualifiers

  • Review-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media