Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Reoptimization of minimum and maximum traveling salesman's tours

Published: 01 December 2009 Publication History

Abstract

In this paper, reoptimization versions of the traveling salesman problem (TSP) are addressed. Assume that an optimum solution of an instance is given and the goal is to determine if one can maintain a good solution when the instance is subject to minor modifications. We study the case where nodes are inserted in, or deleted from, the graph. When inserting a node, we show that the reoptimization problem for MinTSP is approximable within ratio 4/3 if the distance matrix is metric. We show that, dealing with metric MaxTSP, a simple heuristic is asymptotically optimum when a constant number of nodes are inserted. In the general case, we propose a 4/5-approximation algorithm for the reoptimization version of MaxTSP.

References

[1]
Archetti, C., Bertazzi, L. and Speranza, M.G., Reoptimizing the traveling salesman problem. Networks. v42 i3. 154-159.
[2]
G. Ausiello, V. Bonifaci, B. Escoffier, Complexity and approximation in reoptimization, in: Cahier du LAMSADE 281, LAMSADE, Université Paris-Dauphine, 2008
[3]
Bartusch, M., Möhring, R.H. and Radermacher, F.J., Scheduling project networks with resource constraints and time windows. Ann. Oper. Res. v16. 201-240.
[4]
Bartusch, M., Möhring, R.H. and Radermacher, F.J., A conceptional outline of a dss for scheduling problems in the building industry. Decision Support Syst. v5. 321-344.
[5]
Bilò, D., Böckenhauer, H.-J., Hromkovic, J., Královic, R., Mömke, T., Widmayer, P. and Zych, A., Reoptimization of Steiner trees. In: Gudmundsson, J. (Ed.), Lecture Notes in Computer Science, vol. 5124. Springer. pp. 258-269.
[6]
H.-J. Böckenhauer, L. Forlizzi, J. Hromkovic, J. Kneis, J. Kupke, G. Proietti, P. Widmayer, Reusing optimal tsp solutions for locally modified input instances, in: 4th IFIP Int. Conf. on Theoretical Computer Science, 2006, pp. 251-270
[7]
Chen, Z.-Z., Okamoto, Y. and Wang, L., Improved deterministic approximation algorithms for Max TSP. Inform. Process. Lett. v95. 333-342.
[8]
N. Christofides, Worst-case analysis of a new heuristic for the traveling salesman problem, Technical Report 338, Grad School of Industrial Administration, Canergie-Mellon University, Pittsburgh, 1976
[9]
Eppstein, D., Galil, Z., Italiano, G.F. and Nissenzweig, A., Sparsification - a technique for speeding up dynamic graph algorithms. J. ACM. v44 i5. 669-696.
[10]
B. Escoffier, M. Milanic, V.T. Paschos, Simple and fast reoptimizations for the Steiner tree problem, in: Cahier du LAMSADE 245, LAMSADE, Université Paris-Dauphine, 2007
[11]
Garey, M.R. and Johnson, D.S., Computer and Intractability: A Guide to the Theory of NP-Completeness. 1979. W. H. Freeman.
[12]
Gutin, G. and Punnen, A.P., The Traveling Salesman Problem and Its Variations. 2002. Combinatorial Optimization, 2002.Kluwer Academic Publishers.
[13]
D. Hartvigsen, Extensions of matching theory, PhD thesis, Carnegie-Mellon University, 1984
[14]
Hassin, R. and Rubinstein, S., A 7/8-approximation algorithm for metric Max TSP. Inform. Process. Lett. v81 i5. 247-251.
[15]
Henzinger, M.R. and King, V., Maintaining minimum spanning trees in dynamic graphs. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (Eds.), Lecture Notes in Computer Science, vol. 1256. Springer. pp. 594-604.
[16]
Johnson, D.S. and McGeoch, L.A., The traveling salesman problem: a case study. In: Aarts, E., Lenstra, J.K. (Eds.), Local Search in Combinatorial Optimization, Wiley.
[17]
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B., The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. 1985. Discrete Mathematics and Optimization, 1985.Wiley.
[18]
C.H. Papadimitriou, K. Steiglitz, Some complexity results for the traveling salesman problem, in: STOC'76, 1976, pp. 1-9
[19]
Papadimitriou, C.H. and Yannakakis, M., The traveling salesman problem with distances one and two. Math. Oper. Res. v18. 1-11.
[20]
Rosenkrantz, D.J., Stearns, R.E. and Lewis II, P.M., An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. v6 i3. 563-581.
[21]
Sahni, S. and Gonzalez, T.F., P-complete approximation problems. J. ACM. v23 i3. 555-565.
[22]
Schäffter, M.W., Scheduling with forbidden sets. Discrete Appl. Math. v72 i1-2. 155-166.
[23]
Serdyukov, A.I., An algorithm with an estimate for the traveling salesman problem of the maximum. Upravlyaemye Sistemy. v25. 80-86.
[24]
A. Zych, D. Bilò, P. Widmayer, Reoptimization of weighted graph and covering problems, in: WAOA, 2008, in press

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Discrete Algorithms
Journal of Discrete Algorithms  Volume 7, Issue 4
December, 2009
234 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 December 2009

Author Tags

  1. Approximation algorithms
  2. Reoptimization
  3. Traveling Salesman Problem

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)New Algorithms for Steiner Tree ReoptimizationAlgorithmica10.1007/s00453-024-01243-286:8(2652-2675)Online publication date: 1-Aug-2024
  • (2020)Robust Reoptimization of Steiner TreesAlgorithmica10.1007/s00453-020-00682-x82:7(1966-1988)Online publication date: 1-Jul-2020
  • (2019)Reoptimization of minimum latency problem revisitedJournal of Combinatorial Optimization10.1007/s10878-018-0317-337:2(601-619)Online publication date: 1-Feb-2019
  • (2018)A Theory and Algorithms for Combinatorial ReoptimizationAlgorithmica10.1007/s00453-017-0274-880:2(576-607)Online publication date: 1-Feb-2018
  • (2017)Cost-Oblivious Storage ReallocationACM Transactions on Algorithms10.1145/307069313:3(1-20)Online publication date: 26-May-2017
  • (2015)Cost-Oblivious Reallocation for Scheduling and PlanningProceedings of the 27th ACM symposium on Parallelism in Algorithms and Architectures10.1145/2755573.2755589(143-154)Online publication date: 13-Jun-2015
  • (2015)Reallocation Problems in SchedulingAlgorithmica10.1007/s00453-014-9930-473:2(389-409)Online publication date: 1-Oct-2015
  • (2014)Cost-oblivious storage reallocationProceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems10.1145/2594538.2594548(278-288)Online publication date: 18-Jun-2014
  • (2013)Reallocation problems in schedulingProceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures10.1145/2486159.2486181(271-279)Online publication date: 23-Jul-2013
  • (2013)Reoptimizing the rural postman problemComputers and Operations Research10.1016/j.cor.2012.12.01040:5(1306-1313)Online publication date: 1-May-2013

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media