Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Robust and efficient fixed-point algorithm for the inverse elastostatic problem to identify myocardial passive material parameters and the unloaded reference configuration

Published: 15 August 2022 Publication History

Abstract

Image-based computational models of the heart represent a powerful tool to shed new light on the mechanisms underlying physiological and pathological conditions in cardiac function and to improve diagnosis and therapy planning. However, in order to enable the clinical translation of such models, it is crucial to develop personalized models that are able to reproduce the physiological reality of a given patient. There have been numerous contributions in experimental and computational biomechanics to characterize the passive behavior of the myocardium. However, most of these studies suffer from severe limitations and are not applicable to high-resolution geometries. In this work, we present a novel methodology to perform an automated identification of in vivo properties of passive cardiac biomechanics. The highly-efficient algorithm fits material parameters against the shape of a patient-specific approximation of the end-diastolic pressure-volume relation (EDPVR). Simultaneously, an unloaded reference configuration is generated, where a novel line search strategy to improve convergence and robustness is implemented. Only clinical image data or previously generated meshes at one time point during diastole and one measured data point of the EDPVR are required as an input. The proposed method can be straightforwardly coupled to existing finite element (FE) software packages and is applicable to different constitutive laws and FE formulations. Sensitivity analysis demonstrates that the algorithm is robust with respect to initial input parameters.

Highlights

Novel fitting method to find personalized passive material parameters.
The algorithm requires image data at only one time instance during diastolic filling.
Algorithm to find the unloaded configuration with a novel line search strategy.
Applicable to a large variety of constitutive models and finite-element formulations.
Robust, efficient, and simple to be integrated in existing finite element frameworks.

References

[1]
A.C. Aitken, On the iterative solution of a system of linear equations, Proc. R. Soc. Edinb., Sect. A, Math. 63 (1950) 52–60.
[2]
M.S. Amzulescu, M. De Craene, H. Langet, A. Pasquet, D. Vancraeynest, A.C. Pouleur, J.L. Vanoverschelde, B.L. Gerber, Myocardial strain imaging: review of general principles, validation, and sources of discrepancies, Eur. Heart J. Cardiovasc. Imaging 20 (2019) 605–619.
[3]
L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pac. J. Math. 16 (1966) 1–3.
[4]
L. Asner, M. Hadjicharalambous, R. Chabiniok, D. Peresutti, E. Sammut, J. Wong, G. Carr-White, P. Chowienczyk, J. Lee, A. King, N. Smith, R. Razavi, D. Nordsletten, Estimation of passive and active properties in the human heart using 3D tagged MRI, Biomech. Model. Mechanobiol. 15 (2016) 1121–1139.
[5]
K.F. Augenstein, B.R. Cowan, I.J. LeGrice, P.M. Nielsen, A.A. Young, Method and apparatus for soft tissue material parameter estimation using tissue tagged magnetic resonance imaging, J. Biomech. Eng. 127 (2005) 148–157.
[6]
C.M. Augustin, A. Crozier, A. Neic, A.J. Prassl, E. Karabelas, T. Ferreira da Silva, J.F. Fernandes, F. Campos, T. Kuehne, G. Plank, Patient-specific modeling of left ventricular electromechanics as a driver for haemodynamic analysis, Europace 18 (2016) iv121–iv129.
[7]
C.M. Augustin, T.E. Fastl, A. Neic, C. Bellini, J. Whitaker, R. Rajani, M.D. O'Neill, M.J. Bishop, G. Plank, S.A. Niederer, The impact of wall thickness and curvature on wall stress in patient-specific electromechanical models of the left atrium, Biomech. Model. Mechanobiol. (2019).
[8]
Augustin, C.M.; Gsell, M.A.; Karabelas, E.; Willemen, E.; Prinzen, F.; Lumens, J.; Vigmond, E.J.; Plank, G. (2020): Validation of a 3D–0D closed-loop model of the heart and circulation — Modeling the experimental assessment of diastolic and systolic ventricular properties. preprint arXiv:2009.08802.
[9]
C.M. Augustin, A. Neic, M. Liebmann, A.J. Prassl, S.A. Niederer, G. Haase, G. Plank, Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation, J. Comput. Phys. 305 (2016) 622–646.
[10]
R. Avazmohammadi, J.S. Soares, D.S. Li, S.S. Raut, R.C. Gorman, M.S. Sacks, A contemporary look at biomechanical models of myocardium, Annu. Rev. Biomed. Eng. 21 (2019) 417–442.
[11]
B. Baillargeon, N. Rebelo, D.D. Fox, R.L. Taylor, E. Kuhl, The living heart project: a robust and integrative simulator for human heart function, Eur. J. Mech. A, Solids 48 (2014) 38–47.
[12]
P.T. Boggs, J.W. Tolle, Sequential quadratic programming, Acta Numer. 4 (1995) 1–51.
[13]
S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[14]
E.D. Carruth, A.D. McCulloch, J.H. Omens, Transmural gradients of myocardial structure and mechanics: implications for fiber stress and strain in pressure overload, Prog. Biophys. Mol. Biol. 122 (2016) 215–226.
[15]
R. Chabiniok, P. Moireau, P.F. Lesault, A. Rahmouni, J.F. Deux, D. Chapelle, Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model, Biomech. Model. Mechanobiol. 11 (2012) 609–630.
[16]
H. Demiray, A note on the elasticity of soft biological tissues, J. Biomech. 5 (1972) 309–311.
[17]
S. Dokos, B.H. Smaill, A.A. Young, I.J. LeGrice, Shear properties of passive ventricular myocardium, Am. J. Physiol., Heart Circ. Physiol. 283 (2002) H2650–H2659.
[18]
T.S.E. Eriksson, A.J. Prassl, G. Plank, G.A. Holzapfel, Modeling the dispersion in electromechanically coupled myocardium, Int. J. Numer. Methods Biomed. Eng. 29 (2013) 1267–1284.
[19]
J.F. Fernandes, L. Goubergrits, J. Brüning, F. Hellmeier, S. Nordmeyer, T.F. da Silva, S. Schubert, F. Berger, T. Kuehne, M. Kelm, et al., Beyond pressure gradients: the effects of intervention on heart power in aortic coarctation, PLoS ONE 12 (2017).
[20]
H. Finsberg, G. Balaban, S. Ross, T.F. Håland, H.H. Odland, J. Sundnes, S. Wall, Estimating cardiac contraction through high resolution data assimilation of a personalized mechanical model, J. Comput. Sci. 24 (2018) 85–90.
[21]
H. Finsberg, C. Xi, J.L. Tan, L. Zhong, M. Genet, J. Sundnes, L.C. Lee, S.T. Wall, Efficient estimation of personalized biventricular mechanical function employing gradient-based optimization, Int. J. Numer. Methods Biomed. Eng. 34 (2018) 1–20.
[22]
P.J. Flory, Thermodynamic relations for high elastic materials, Trans. Faraday Soc. (1961).
[23]
Y.C. Fung, Biomechanics: Circulation, Springer Science & Business Media, 2013.
[24]
H. Gao, W.G. Li, L. Cai, C. Berry, X.Y. Luo, Parameter estimation in a Holzapfel–Ogden law for healthy myocardium, J. Eng. Math. 95 (2015) 231–248.
[25]
L. Geerts, R.C.P. Kerckhoffs, P. Bovendeerd, T. Arts, Towards patient specific models of cardiac mechanics: a sensitivity study, Lect. Notes Comput. Sci. 2674 (2003) 81–90.
[26]
M. Genet, L.C. Lee, R. Nguyen, H. Haraldsson, G. Acevedo-Bolton, Z. Zhang, L. Ge, K. Ordovas, S. Kozerke, J.M. Guccione, Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments, J. Appl. Physiol. 117 (2014) 142–152.
[27]
M. Genet, M. Rausch, L. Lee, S. Choy, X. Zhao, G. Kassab, S. Kozerke, J. Guccione, E. Kuhl, Heterogeneous growth-induced prestrain in the heart, J. Biomech. 48 (2015) 2080–2089.
[28]
D. Ghista, G. Ray, H. Sandler, Cardiac assessment mechanics: 1 left ventricular mechanomyocardiography, a new approach to the detection of diseased myocardial elements and states, Med. Biol. Eng. Comput. 18 (1980) 271–280.
[29]
S. Govindjee, P.A. Mihalic, Computational methods for inverse finite elastostatics, Comput. Methods Appl. Mech. Eng. 136 (1996) 47–57.
[30]
D. Guan, F. Ahmad, P. Theobald, S. Soe, X. Luo, H. Gao, On the AIC-based model reduction for the general Holzapfel–Ogden myocardial constitutive law, Biomech. Model. Mechanobiol. 18 (2019) 1213–1232.
[31]
J.M. Guccione, K.D. Costa, A.D. McCulloch, Finite element stress analysis of left ventricular mechanics in the beating dog heart, J. Biomech. 28 (1995) 1167–1177.
[32]
J.M. Guccione, A.D. McCulloch, L.K. Waldman, Passive material properties of intact ventricular myocardium determined from a cylindrical model, J. Biomech. Eng. 113 (1991) 42–55.
[33]
O. Gültekin, G. Sommer, G.A. Holzapfel, An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment, Comput. Methods Biomech. Biomed. Eng. 19 (2016) 1647–1664.
[34]
M. Hadjicharalambous, R. Chabiniok, L. Asner, E. Sammut, J. Wong, G. Carr-White, J. Lee, R. Razavi, N. Smith, D. Nordsletten, Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI, Biomech. Model. Mechanobiol. 14 (2015) 807–828.
[35]
J. Helfenstein, M. Jabareen, E. Mazza, S. Govindjee, On non-physical response in models for fiber-reinforced hyperelastic materials, Int. J. Solids Struct. 47 (2010) 2056–2061.
[36]
A. Hemmasizadeh, K. Darvish, M. Autieri, Characterization of changes to the mechanical properties of arteries due to cold storage using nanoindentation tests, Ann. Biomed. Eng. 40 (2012) 1434–1442.
[37]
J.P. Holt, The normal pericardium, Am. J. Cardiol. 26 (1970) 455–465.
[38]
J.P. Holt, E.A. Rhode, H. Kines, Pericardial and ventricular pressure, Circ. Res. 8 (1960) 1171–1181.
[39]
G.A. Holzapfel, R.W. Ogden, Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Philos. Trans. R. Soc. A 367 (2009) 3445–3475.
[40]
C.F. Jekel, G. Venter, M.P. Venter, N. Stander, R.T. Haftka, Similarity measures for identifying material parameters from hysteresis loops using inverse analysis, Int. J. Mater. Form. 12 (2019) 355–378.
[41]
S. Kallhovd, J. Sundnes, S.T. Wall, Sensitivity of stress and strain calculations to passive material parameters in cardiac mechanical models using unloaded geometries, Comput. Methods Biomech. Biomed. Eng. 22 (2019) 664–675.
[42]
E. Karabelas, M.A. Gsell, G. Haase, G. Plank, C.M. Augustin, An accurate, robust, and efficient finite element framework with applications to anisotropic, nearly and fully incompressible elasticity, Comput. Methods Appl. Mech. Eng. 394 (2022).
[43]
E. Karabelas, M.A.F. Gsell, C.M. Augustin, L. Marx, A. Neic, A.J. Prassl, L. Goubergrits, T. Kuehne, G. Plank, Towards a computational framework for modeling the impact of aortic coarctations upon left ventricular load, Front. Physiol. 9 (2018) 1–20.
[44]
E. Karabelas, G. Haase, G. Plank, C.M. Augustin, Versatile stabilized finite element formulations for nearly and fully incompressible solid mechanics, Comput. Mech. 65 (2020) 193–215.
[45]
S. Klotz, M.L. Dickstein, D. Burkhoff, A computational method of prediction of the end-diastolic pressure–volume relationship by single beat, Nat. Protoc. 2 (2007) 2152–2158.
[46]
A. Krishnamurthy, C.T. Villongco, J. Chuang, L.R. Frank, V. Nigam, E. Belezzuoli, P. Stark, D.E. Krummen, S. Narayan, J.H. Omens, et al., Patient-specific models of cardiac biomechanics, J. Comput. Phys. 244 (2013) 4–21.
[47]
S. Land, V. Gurev, S. Arens, C.M. Augustin, L. Baron, R. Blake, C. Bradley, S. Castro, A. Crozier, M. Favino, T.E. Fastl, T. Fritz, H. Gao, A. Gizzi, B.E. Griffith, D.E. Hurtado, R. Krause, X. Luo, M.P. Nash, S. Pezzuto, G. Plank, S. Rossi, D. Ruprecht, G. Seemann, N.P. Smith, J. Sundnes, J.J. Rice, N. Trayanova, D. Wang, Z. Jenny Wang, S.A. Niederer, Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour, Proc. R. Soc. A, Math. Phys. Eng. Sci. 471 (2015).
[48]
S.A. Maas, A. Erdemir, J.P. Halloran, J.A. Weiss, A general framework for application of prestrain to computational models of biological materials, J. Mech. Behav. Biomed. Mater. 61 (2016) 499–510.
[49]
L. Marx, M.A.F. Gsell, A. Rund, F. Caforio, A.J. Prassl, G. Toth-Gayor, T. Kuehne, C.M. Augustin, G. Plank, Personalization of electro-mechanical models of the pressure-overloaded left ventricle: fitting of Windkessel-type afterload models, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 378 (2020).
[50]
R. Miller, D. Marlevi, W. Zhang, M. Hirschvogel, M. Hadjicharalambous, A. Capilnasiu, M. Balmus, S. Hager, J. Jilberto, M. Bonini, A. Wittgenstein, Y. Ahmed, D. Nordsletten, Modeling biomechanics in the healthy and diseased heart, in: J. Málek, E. Süli (Eds.), Modeling Biomaterials, Springer International Publishing, Cham, 2021, pp. 141–239.
[51]
G.R. Mirams, S.A. Niederer, R.H. Clayton, The fickle heart: uncertainty quantification in cardiac and cardiovascular modelling and simulation: the fickle heart, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 378 (2020).
[52]
G.R. Mirams, P. Pathmanathan, R.A. Gray, P. Challenor, R.H. Clayton, Uncertainty and variability in computational and mathematical models of cardiac physiology, J. Physiol. 594 (2016) 6833–6847.
[53]
I. Mirsky, W.W. Parmley, Assessment of passive elastic stiffness for isolated heart muscle and the intact heart, Circ. Res. (1973).
[54]
P. Moireau, D. Chapelle, Reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems, ESAIM Control Optim. Calc. Var. 17 (2011) 380–405.
[55]
J.J. Moré, The Levenberg-Marquardt algorithm: implementation and theory, in: Numerical Analysis, Springer, 1978, pp. 105–116.
[56]
A.U. Nair, D.G. Taggart, F.J. Vetter, Optimizing cardiac material parameters with a genetic algorithm, J. Biomech. 40 (2007) 1646–1650.
[57]
M.P. Nash, P.J. Hunter, Computational mechanics of the heart, J. Elast. 61 (2000) 113–141.
[58]
A. Nasopoulou, A. Shetty, J. Lee, D. Nordsletten, C.A. Rinaldi, P. Lamata, S. Niederer, Improved identifiability of myocardial material parameters by an energy-based cost function, Biomech. Model. Mechanobiol. 16 (2017) 971–988.
[59]
S.A. Niederer, Y. Aboelkassem, C.D. Cantwell, C. Corrado, S. Coveney, E.M. Cherry, T. Delhaas, F.H. Fenton, A.V. Panfilov, P. Pathmanathan, G. Plank, M. Riabiz, C.H. Roney, R.W. Dos Santos, L. Wang, Creation and application of virtual patient cohorts of heart models: virtual cohorts of heart models, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 378 (2020).
[60]
S.A. Niederer, J. Lumens, N.A. Trayanova, Computational models in cardiology, Nat. Rev. Cardiol. 16 (2019) 100–111.
[61]
S. Nikolic, E.L. Yellin, K. Tamura, H. Vetter, T. Tamura, J.S. Meisner, R.W. Frater, Passive properties of canine left ventricle diastolic stiffness and restoring forces, Circ. Res. 62 (1988) 1210–1222.
[62]
A. Nikou, S.M. Dorsey, J.R. McGarvey, J.H. GormGan, J.A. Burdick, J.J. Pilla, R.C. Gorman, J.F. Wenk, Effects of using the unloaded configuration in predicting the in vivo diastolic properties of the heart, Comput. Methods Biomech. Biomed. Eng. 19 (2016) 1714–1720.
[63]
D. Nordsletten, M. McCormick, P. Kilner, P. Hunter, D. Kay, N. Smith, Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function, Int. J. Numer. Methods Biomed. Eng. 27 (2011) 1017–1039.
[64]
D. Nordsletten, S. Niederer, M. Nash, P. Hunter, N. Smith, Coupling multi-physics models to cardiac mechanics, Prog. Biophys. Mol. Biol. 104 (2011) 77–88.
[65]
J.H. Omens, Y.C. Fung, Residual strain in rat left ventricle, Circ. Res. 66 (1990) 37–45.
[66]
A. Palit, S.K. Bhudia, T.N. Arvanitis, G.A. Turley, M.A. Williams, In vivo estimation of passive biomechanical properties of human myocardium, Med. Biol. Eng. Comput. 56 (2018) 1615–1631.
[67]
V. Rajagopal, J.H. Chung, D. Bullivant, P.M.F. Nielsen, M.P. Nash, Determining the finite elasticity reference state from a loaded configuration, Int. J. Numer. Methods Eng. 72 (2007) 1434–1451.
[68]
M.K. Rausch, M. Genet, J.D. Humphrey, An augmented iterative method for identifying a stress-free reference configuration in image-based biomechanical modeling, J. Biomech. 58 (2017) 227–231.
[69]
N. Reichek, Myocardial strain, Circ. Cardiovasc. Imaging 10 (2017) 1–3.
[70]
E.W. Remme, P.J. Hunter, O. Smiseth, C. Stevens, S.I. Rabben, H. Skulstad, B. Angelsen, Development of an in vivo method for determining material properties of passive myocardium, J. Biomech. 37 (2004) 669–678.
[71]
R. Rodríguez-Cantano, J. Sundnes, M.E. Rognes, Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response, Int. J. Numer. Methods Biomed. Eng. 35 (2019).
[72]
K.L. Sack, E. Aliotta, D.B. Ennis, J.S. Choy, G.S. Kassab, J.M. Guccione, T. Franz, Construction and validation of subject-specific biventricular finite-element models of healthy and failing swine hearts from high-resolution DT-MRI, Front. Physiol. 9 (2018) 539.
[73]
J. Sainte-Marie, D. Chapelle, R. Cimrman, M. Sorine, Modeling and estimation of the cardiac electromechanical activity, Comput. Struct. 84 (2006) 1743–1759.
[74]
C. Sansour, On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy, Eur. J. Mech. A, Solids 27 (2008) 28–39.
[75]
M. Sellier, An iterative method for the inverse elasto-static problem, J. Fluids Struct. 27 (2011) 1461–1470.
[76]
M. Sermesant, R. Chabiniok, P. Chinchapatnam, T. Mansi, F. Billet, P. Moireau, J.M. Peyrat, K. Wong, J. Relan, K. Rhode, et al., Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation, Med. Image Anal. 16 (2012) 201–215.
[77]
G. Sommer, A.J. Schriefl, M. Andrä, M. Sacherer, C. Viertler, H. Wolinski, G.A. Holzapfel, Biomechanical properties and microstructure of human ventricular myocardium, Acta Biomater. 24 (2015) 172–192.
[78]
M. Strocchi, C.M. Augustin, M.A. Gsell, E. Karabelas, A. Neic, K. Gillette, O. Razeghi, A.J. Prassl, E.J. Vigmond, J.M. Behar, J.M. Behar, J. Gould, J. Gould, B. Sidhu, B. Sidhu, C.A. Rinaldi, C.A. Rinaldi, M.J. Bishop, G. Plank, S.A. Niederer, A publicly available virtual cohort of fourchamber heart meshes for cardiac electromechanics simulations, PLoS ONE 15 (2020) 1–26.
[79]
M. Strocchi, M.A. Gsell, C.M. Augustin, O. Razeghi, C.H. Roney, A.J. Prassl, E.J. Vigmond, J.M. Behar, J.S. Gould, C.A. Rinaldi, M.J. Bishop, G. Plank, S.A. Niederer, Simulating ventricular systolic motion in a four-chamber heart model with spatially varying Robin boundary conditions to model the effect of the pericardium, J. Biomech. 101 (2020).
[80]
S. Sugiura, T. Washio, A. Hatano, J. Okada, H. Watanabe, T. Hisada, Multi-scale simulations of cardiac electrophysiology and mechanics using the University of Tokyo heart simulator, Prog. Biophys. Mol. Biol. 110 (2012) 380–389.
[81]
N. Tueni, J. Vizet, M. Genet, A. Pierangelo, J.M. Allain, Microstructural deformation observed by mueller polarimetry during traction assay on myocardium samples, Sci. Rep. 10 (2020).
[82]
T.P. Usyk, R. Mazhari, A.D. McCulloch, Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle, J. Elast. 61 (2000) 143–164.
[83]
E.J. Vigmond, R. dos Santos, A.J. Prassl, M. Deo, G. Plank, R. Weber dos Santos, A.J. Prassl, M. Deo, G. Plank, Solvers for the cardiac bidomain equations, Prog. Biophys. Mol. Biol. 96 (2008) 3–18.
[84]
H.M. Wang, H. Gao, X.Y. Luo, C. Berry, B.E. Griffith, R.W. Ogden, T.J. Wang, Structure-based finite strain modelling of the human left ventricle in diastole, Int. J. Numer. Methods Biomed. Eng. 29 (2013) 83–103.
[85]
V.Y. Wang, H. Lam, D.B. Ennis, B.R. Cowan, A.A. Young, M.P. Nash, Modelling passive diastolic mechanics with quantitative mri of cardiac structure and function, Med. Image Anal. 13 (2009) 773–784.
[86]
V.Y. Wang, A.A. Young, B.R. Cowan, M.P. Nash, Changes in in vivo myocardial tissue properties due to heart failure, in: International Conference on Functional Imaging and Modeling of the Heart, Springer, 2013, pp. 216–223.
[87]
A. Wittek, K. Karatolios, P. Bihari, T. Schmitz-Rixen, R. Moosdorf, S. Vogt, C. Blase, In vivo determination of elastic properties of the human aorta based on 4d ultrasound data, J. Mech. Behav. Biomed. Mater. 27 (2013) 167–183.
[88]
J. Wu, C.M. Augustin, S.C. Shadden, Reconstructing vascular homeostasis by growth-based prestretch and optimal fiber deposition, J. Mech. Behav. Biomed. Mater. 114 (2021).
[89]
J. Xi, P. Lamata, J. Lee, P. Moireau, D. Chapelle, N. Smith, Myocardial transversely isotropic material parameter estimation from in-silico measurements based on a reduced-order unscented Kalman filter, J. Mech. Behav. Biomed. Mater. 4 (2011) 1090–1102.
[90]
J. Xi, P. Lamata, S. Niederer, S. Land, W. Shi, X. Zhuang, S. Ourselin, S.G. Duckett, A.K. Shetty, C.A. Rinaldi, D. Rueckert, R. Razavi, N.P. Smith, The estimation of patient-specific cardiac diastolic functions from clinical measurements, Med. Image Anal. 17 (2013) 133–146.
[91]
J. Xi, W. Shi, D. Rueckert, R. Razavi, N.P. Smith, P. Lamata, Understanding the need of ventricular pressure for the estimation of diastolic biomarkers, Biomech. Model. Mechanobiol. 13 (2014) 747–757.
[92]
A.A. Young, A.F. Frangi, Computational cardiac atlases: from patient to population and back, Exp. Physiol. 94 (2009) 578–596.

Cited By

View all
  • (2023)Evaluation of Mechanical Unloading of a Patient-Specific Left Ventricle: A Numerical Comparison StudyFunctional Imaging and Modeling of the Heart10.1007/978-3-031-35302-4_59(575-584)Online publication date: 20-Jun-2023
  • (2022)A coupling strategy for a first 3D-1D model of the cardiovascular system to study the effects of pulse wave propagation on cardiac functionComputational Mechanics10.1007/s00466-022-02206-670:4(703-722)Online publication date: 1-Oct-2022

Index Terms

  1. Robust and efficient fixed-point algorithm for the inverse elastostatic problem to identify myocardial passive material parameters and the unloaded reference configuration
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Journal of Computational Physics
            Journal of Computational Physics  Volume 463, Issue C
            Aug 2022
            1215 pages

            Publisher

            Academic Press Professional, Inc.

            United States

            Publication History

            Published: 15 August 2022

            Author Tags

            1. Unloaded reference configuration
            2. Parameter estimation
            3. Cardiac mechanics
            4. Passive biomechanical properties
            5. Patient-specific modeling

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 23 Sep 2024

            Other Metrics

            Citations

            Cited By

            View all
            • (2023)Evaluation of Mechanical Unloading of a Patient-Specific Left Ventricle: A Numerical Comparison StudyFunctional Imaging and Modeling of the Heart10.1007/978-3-031-35302-4_59(575-584)Online publication date: 20-Jun-2023
            • (2022)A coupling strategy for a first 3D-1D model of the cardiovascular system to study the effects of pulse wave propagation on cardiac functionComputational Mechanics10.1007/s00466-022-02206-670:4(703-722)Online publication date: 1-Oct-2022

            View Options

            View options

            Get Access

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media