Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Topology optimization of thermal fluid flows with an adjoint Lattice Boltzmann Method

Published: 15 July 2018 Publication History

Abstract

This paper presents an adjoint Lattice Boltzmann Method (LBM) coupled with the Level-Set Method (LSM) for topology optimization of thermal fluid flows. The adjoint-state formulation implies discrete velocity directions in order to take into account the LBM boundary conditions. These boundary conditions are introduced at the beginning of the adjoint-state method as the LBM residuals, so that the adjoint-state boundary conditions can appear directly during the adjoint-state equation formulation. The proposed method is tested with 3 numerical examples concerning thermal fluid flows, but with different objectives: minimization of the mean temperature in the domain, maximization of the heat evacuated by the fluid, and maximization of the heat exchange with heated solid parts. This latter example, treated in several articles, is used to validate our method. In these optimization problems, a limitation of the maximal pressure drop and of the porosity (number of fluid elements) is also applied. The obtained results demonstrate that the method is robust and effective for solving topology optimization of thermal fluid flows.

Highlights

Topology optimization of thermal fluid flow problems using LBM and LSM.
Continuous adjoint-state problem in space and time.
New introduction of the LBM boundary conditions in the adjoint-state formulation.
Use of the LBM incompressible model to improve the forward problem accuracy and to simplify adjoint-states calculations.

References

[1]
G. Marck, Topological Optimization of Heat and Mass Transfer, Ph.D. thesis 2012.
[2]
G. Pingen, Optimal Design for Fluidic Systems: Topology and Shape Optimization with the Lattice Boltzmann Method, Ph.D. thesis 2008.
[3]
M.P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optim. 1 (4) (1989) 193–202,.
[4]
O. Sigmund, On the design of compliant mechanisms using topology optimization, Mech. Struct. Mach. 25 (4) (1997) 493–524,.
[5]
O. Sigmund, K. Maute, Topology optimization approaches, Struct. Multidiscip. Optim. 48 (2013) 1031–1055,.
[6]
T. Borrvall, J. Petersson, Topology optimization of fluids in Stokes flow, Int. J. Numer. Methods Fluids 41 (2003) 77–107,.
[7]
A. Gersborg-Hansen, O. Sigmund, R. Haber, Topology optimization of channel flow problems, Struct. Multidiscip. Optim. 30 (3) (2005) 181–192,.
[8]
A. Evgrafov, Topology optimization of slightly compressible fluids, Z. Angew. Math. Mech. 86 (1) (2006) 46–62,.
[9]
S. Kreissl, G. Pingen, K. Maute, An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method, Int. J. Numer. Methods Fluids 65 (2011) 496–519,.
[10]
V.J. Challis, J.K. Guest, Level set topology optimization of fluids in Stokes flow, Int. J. Numer. Methods Eng. 79 (10) (2009) 1284–1308,.
[11]
Y. Deng, Z. Liu, P. Zhang, Y. Liu, Y. Wu, Topology optimization of unsteady incompressible Navier–Stokes flows, J. Comput. Phys. 230 (17) (2011) 6688–6708,.
[12]
G. Pingen, A. Evgrafov, K. Maute, Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization, Comput. Fluids 38 (4) (2009) 910–923,.
[13]
T. Bruns, Topology optimization of convection-dominated, steady–state heat transfer problems, Int. J. Heat Mass Transf. 50 (15–16) (2007) 2859–2873,.
[14]
E. Dede, Multiphysics topology optimization of heat transfer and fluid flow systems, in: COMSOL Conference, 2009.
[15]
G. Pingen, D. Meyer, Topology optimization for thermal transport, in: Proceedings of the ASME Fluids Engineering Division Summer Conference 1 (PTS A-C), 2009, pp. 2237–2243.
[16]
G. Marck, M. Nemer, J. Harion, Topology optimization of heat and mass transfer problems: laminar flow, Numer. Heat Transf., Part B, Fundam. 63 (2013) 508–539,.
[17]
T. Matsumori, T. Kondoh, A. Kawamoto, T. Nomura, Topology optimization for fluid-thermal interaction problems under constant input power, Struct. Multidiscip. Optim. 47 (4) (2013) 571–581,.
[18]
S. Succi, R. Benzi, F. Higuera, The lattice Boltzmann equation: a new tool for computational fluid-dynamics, Physica D 47 (1–2) (1991) 219–230,.
[19]
Q. Zou, X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids 9 (1997) 1591,.
[20]
X. He, S. Chen, G.D. Doolen, A novel thermal model for the Lattice Boltzmann Method in incompressible limit, J. Comput. Phys. 146 (1) (1998) 282–300,.
[21]
Y. Peng, C. Shu, Y. Chew, Simplified thermal lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E 68 (2) (2003),.
[22]
Y. Yan, Y. Zu, Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder — A LBM approach, Int. J. Heat Mass Transf. 51 (9–10) (2008) 2519–2536,.
[23]
F. Kuznik, C. Obrecht, G. Rusaouen, J.-J. Roux, LBM based flow simulation using GPU computing processor, Comput. Math. Appl. 59 (7) (2010) 2380–2392,.
[24]
J. Tölke, Implementation of a Lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA, Comput. Vis. Sci. 13 (1) (2010) 29–39,.
[25]
Y. Ye, K. Li, Entropic Lattice Boltzmann Method based high Reynolds number flow simulation using CUDA on GPU, Comput. Fluids 88 (2013) 241–249,.
[26]
L. Luo, D. Tondeur, Optimal distribution of viscous dissipation in a multi-scale branched fluid distributor, Int. J. Therm. Sci. 44 (12) (2005) 1131–1141,.
[27]
R. Boichot, L. Luo, Y. Fan, Tree-network structure generation for heat conduction by cellular automaton, Energy Convers. Manag. 50 (2) (2009) 376–386,.
[28]
L. Wang, Y. Fan, L. Luo, Heuristic optimality criterion algorithm for shape design of fluid flow, J. Comput. Phys. 229 (20) (2010) 8031–8044,.
[29]
E. Vergnault, P. Sagaut, An adjoint-based lattice Boltzmann method for noise control problems, J. Comput. Phys. 276 (2014) 39–61,.
[30]
Y. Favennec, V. Labbé, F. Bay, Induction heating processes optimization — A general optimal control approach, J. Comput. Phys. 187 (1) (2003) 68–94,.
[31]
O. Balima, Y. Favennec, D. Rousse, Optical tomography reconstruction algorithm with the finite element method: an optimal approach with regularization tools, J. Comput. Phys. 251 (2013) 461–479,.
[32]
M. Tekitek, M. Bouzidi, F. Dubois, P. Lallemand, Adjoint lattice Boltzmann equation for parameter identification, Comput. Fluids 35 (8–9) (2006) 805–813,.
[33]
A. Kirk, S. Kreissl, G. Pingen, K. Maute, Lattice Boltzmann Topology Optimization for Transient Flow, 2011, pp. 1–8.
[34]
K. Yonekura, Y. Kanno, A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method, Struct. Multidiscip. Optim. 51 (1) (2014) 159–172,.
[35]
S. Nørgaard, O. Sigmund, B. Lazarov, Topology optimization of unsteady flow problems using the lattice Boltzmann method, J. Comput. Phys. 307 (2016) 291–307,.
[36]
M.J. Krause, G. Thäter, V. Heuveline, Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods, in: Computers and Mathematics with Applications, vol. 65, 2013, pp. 945–960,.
[37]
K. Yaji, T. Yamada, M. Yoshino, T. Matsumoto, K. Izui, S. Nishiwaki, Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions, J. Comput. Phys. 274 (2014) 158–181,.
[38]
G. Liu, M. Geier, Z. Liu, M. Krafczyk, T. Chen, Discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method, Comput. Math. Appl. 68 (10) (2014) 1374–1392,.
[39]
K. Yaji, T. Yamada, M. Yoshino, T. Matsumoto, K. Izui, S. Nishiwaki, Topology optimization in thermal-fluid flow using the lattice Boltzmann method, J. Comput. Phys. 307 (2016) 355–377,.
[40]
J.A. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods, J. Comput. Phys. 163 (2000) 489–528,.
[41]
M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng. 192 (1–2) (2003) 227–246,.
[42]
G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys. 194 (2004) 363–393,.
[43]
M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114 (1) (1994) 146–159,.
[44]
D. Hartmann, M. Meinke, W. Schröder, The constrained reinitialization equation for level set methods, J. Comput. Phys. 229 (5) (2010) 1514–1535,.
[45]
B. Zhu, X. Zhang, S. Fatikow, Structural topology and shape optimization using a level set method with distance-suppression scheme, Comput. Methods Appl. Mech. Eng. 283 (2015) 1214–1239,.
[46]
S.M. Allen, J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (6) (1979) 1085–1095,.
[47]
A. Takezawa, S. Nishiwaki, M. Kitamura, Shape and topology optimization based on the phase field method and sensitivity analysis, J. Comput. Phys. 229 (7) (2010) 2697–2718,.
[48]
Chunming Li, Chenyang Xu, Changfeng Gui, M. Fox, Level set evolution without re-initialization: a new variational formulation, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 1 (2005) 430–436,.
[49]
Z. Liu, J. Korvink, R. Huang, Structure topology optimization: fully coupled level set method via FEMLAB, Struct. Multidiscip. Optim. 29 (6) (2005) 407–417,.
[50]
T. Yamada, K. Izui, S. Nishiwaki, A. Takezawa, A topology optimization method based on the level set method incorporating a fictitious interface energy, Comput. Methods Appl. Mech. Eng. 199 (2010) 2876–2891,.
[51]
N.P. van Dijk, K. Maute, M. Langelaar, F. van Keulen, Level-set methods for structural topology optimization: a review, Struct. Multidiscip. Optim. 48 (3) (2013) 437–472,.
[52]
M. Otomori, T. Yamada, K. Izui, S. Nishiwaki, Matlab code for a level set-based topology optimization method using a reaction diffusion equation, Struct. Multidiscip. Optim. (2014) 1159–1172,.
[53]
K. Yaji, T. Yamada, S. Kubo, K. Izui, S. Nishiwaki, A topology optimization method for a coupled thermal-fluid problem using level set boundary expressions, Int. J. Heat Mass Transf. 81 (2015) 878–888,.
[54]
X. He, L.-S. Luo, Lattice Boltzmann model for the incompressible Navier–Stokes equation, J. Stat. Phys. 88 (1997) 927–944,.
[55]
D. Lagrava, O. Malaspinas, J. Latt, B. Chopard, Advances in multi-domain lattice Boltzmann grid refinement, J. Comput. Phys. 231 (14) (2012) 4808–4822,.
[56]
D.a. Wolf-Gladrow, Lattice-gas Cellular Automata and Lattice Boltzmann Models — An Introduction, PoLAR, 2000, p. 308.
[57]
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, vol. 222, 2001.
[58]
P. Bhatnagar, E. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94 (3) (1954) 511–525,.
[59]
S. Marié, Etude de la méthode Boltzmann sur Réseau pour les simulations en aéroacoustique, Thèse UPMC 170 2008.
[60]
S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30 (1) (1998) 329–364,.
[61]
U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-gas automata for the Navier–Stokes equation, Phys. Rev. Lett. 56 (14) (1986) 1505–1508,.
[62]
G. Pingen, A. Evgrafov, K. Maute, Topology optimization of flow domains using the lattice Boltzmann method, Struct. Multidiscip. Optim. 34 (2007) 507–524,.
[63]
Y.H. Qian, D. D'Humières, P. Lallemand, Lattice BGK models for Navier–Stokes equation, Europhys. Lett. 17 (1992) 479.
[64]
Q. Zou, S. Hou, S. Chen, G.D. Doolen, A improved incompressible lattice Boltzmann model for time-independent flows, J. Stat. Phys. 81 (1–2) (1995) 35–48,.
[65]
T. Inamuro, M. Yoshino, H. Inoue, R. Mizuno, F. Ogino, A Lattice Boltzmann Method for a binary miscible fluid mixture and its application to a heat-transfer problem, J. Comput. Phys. 179 (2002) 201–215,.
[66]
M. Gunzburger, Adjoint equation-based methods for control problems in incompressible, viscous flows, Flow Turbul. Combust. 65 (3–4) (2000) 249–272,.
[67]
J. Nocedal, S.J. Wright, Numerical Optimization, 2nd edition, Springer, New York, NY, USA, 2006.
[68]
M. Bergmann, L. Cordier, J.P. Brancher, Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model, Phys. Fluids 17 (9) (2005) 1–21,.
[69]
D. Makhija, G. Pingen, R. Yang, K. Maute, Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method, Comput. Fluids 67 (2012) 104–114,.

Cited By

View all
  • (2023)Topology optimization for rarefied gas flow problems using density method and adjoint IP-DSMCJournal of Computational Physics10.1016/j.jcp.2022.111788474:COnline publication date: 1-Feb-2023
  • (2023)Topology optimization for transient two-phase fluid systems with continuous behaviorFinite Elements in Analysis and Design10.1016/j.finel.2023.104017225:COnline publication date: 1-Nov-2023
  • (2023)Topology optimization using the lattice Boltzmann method for unsteady natural convection problemsStructural and Multidisciplinary Optimization10.1007/s00158-023-03522-y66:5Online publication date: 13-Apr-2023
  • Show More Cited By

Index Terms

  1. Topology optimization of thermal fluid flows with an adjoint Lattice Boltzmann Method
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Journal of Computational Physics
            Journal of Computational Physics  Volume 365, Issue C
            Jul 2018
            405 pages

            Publisher

            Academic Press Professional, Inc.

            United States

            Publication History

            Published: 15 July 2018

            Author Tags

            1. Topology optimization
            2. Adjoint-state method
            3. Thermal fluid flow
            4. Lattice Boltzmann Method (LBM)
            5. Level-Set Method (LSM)

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 18 Dec 2024

            Other Metrics

            Citations

            Cited By

            View all
            • (2023)Topology optimization for rarefied gas flow problems using density method and adjoint IP-DSMCJournal of Computational Physics10.1016/j.jcp.2022.111788474:COnline publication date: 1-Feb-2023
            • (2023)Topology optimization for transient two-phase fluid systems with continuous behaviorFinite Elements in Analysis and Design10.1016/j.finel.2023.104017225:COnline publication date: 1-Nov-2023
            • (2023)Topology optimization using the lattice Boltzmann method for unsteady natural convection problemsStructural and Multidisciplinary Optimization10.1007/s00158-023-03522-y66:5Online publication date: 13-Apr-2023
            • (2022)Topology optimization for the elastic field using the lattice Boltzmann methodComputers & Mathematics with Applications10.1016/j.camwa.2022.01.032110:C(123-134)Online publication date: 15-Mar-2022

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media